Cargando…
RDAClone: Deciphering Tumor Heterozygosity through Single-Cell Genomics Data Analysis with Robust Deep Autoencoder
Rapid advances in single-cell genomics sequencing (SCGS) have allowed researchers to characterize tumor heterozygosity with unprecedented resolution and reveal the phylogenetic relationships between tumor cells or clones. However, high sequencing error rates of current SCGS data, i.e., false positiv...
Autores principales: | Xia, Jie, Wang, Lequn, Zhang, Guijun, Zuo, Chunman, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8701080/ https://www.ncbi.nlm.nih.gov/pubmed/34946794 http://dx.doi.org/10.3390/genes12121847 |
Ejemplares similares
-
Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
por: Zuo, Chunman, et al.
Publicado: (2020) -
Autoencoder Networks Decipher the Association between Lung Cancer and Alzheimer's Disease
por: Li, Jialin, et al.
Publicado: (2022) -
Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
por: Zuo, Chunman, et al.
Publicado: (2022) -
Single-cell entropy network detects the activity of immune cells based on ribosomal protein genes
por: Jin, Qiqi, et al.
Publicado: (2022) -
Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder
por: Alwan, Nuha A. S., et al.
Publicado: (2022)