Cargando…
Swin–UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface
The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy’s properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8703304/ https://www.ncbi.nlm.nih.gov/pubmed/34947098 http://dx.doi.org/10.3390/ma14247504 |