Cargando…

Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance

Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gentile, Chiara, Finizio, Arianna, Froechlich, Guendalina, D’Alise, Anna Morena, Cotugno, Gabriella, Amiranda, Sara, Nicosia, Alfredo, Scarselli, Elisa, Zambrano, Nicola, Sasso, Emanuele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705735/
https://www.ncbi.nlm.nih.gov/pubmed/34948316
http://dx.doi.org/10.3390/ijms222413521
_version_ 1784622020145709056
author Gentile, Chiara
Finizio, Arianna
Froechlich, Guendalina
D’Alise, Anna Morena
Cotugno, Gabriella
Amiranda, Sara
Nicosia, Alfredo
Scarselli, Elisa
Zambrano, Nicola
Sasso, Emanuele
author_facet Gentile, Chiara
Finizio, Arianna
Froechlich, Guendalina
D’Alise, Anna Morena
Cotugno, Gabriella
Amiranda, Sara
Nicosia, Alfredo
Scarselli, Elisa
Zambrano, Nicola
Sasso, Emanuele
author_sort Gentile, Chiara
collection PubMed
description Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. Methods: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). Results: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. Conclusions: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation.
format Online
Article
Text
id pubmed-8705735
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87057352021-12-25 Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance Gentile, Chiara Finizio, Arianna Froechlich, Guendalina D’Alise, Anna Morena Cotugno, Gabriella Amiranda, Sara Nicosia, Alfredo Scarselli, Elisa Zambrano, Nicola Sasso, Emanuele Int J Mol Sci Article Background: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. Methods: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). Results: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. Conclusions: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation. MDPI 2021-12-16 /pmc/articles/PMC8705735/ /pubmed/34948316 http://dx.doi.org/10.3390/ijms222413521 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gentile, Chiara
Finizio, Arianna
Froechlich, Guendalina
D’Alise, Anna Morena
Cotugno, Gabriella
Amiranda, Sara
Nicosia, Alfredo
Scarselli, Elisa
Zambrano, Nicola
Sasso, Emanuele
Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title_full Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title_fullStr Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title_full_unstemmed Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title_short Generation of a Retargeted Oncolytic Herpes Virus Encoding Adenosine Deaminase for Tumor Adenosine Clearance
title_sort generation of a retargeted oncolytic herpes virus encoding adenosine deaminase for tumor adenosine clearance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8705735/
https://www.ncbi.nlm.nih.gov/pubmed/34948316
http://dx.doi.org/10.3390/ijms222413521
work_keys_str_mv AT gentilechiara generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT finizioarianna generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT froechlichguendalina generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT daliseannamorena generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT cotugnogabriella generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT amirandasara generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT nicosiaalfredo generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT scarsellielisa generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT zambranonicola generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance
AT sassoemanuele generationofaretargetedoncolyticherpesvirusencodingadenosinedeaminasefortumoradenosineclearance