Cargando…

An Indoor Navigation Algorithm Using Multi-Dimensional Euclidean Distance and an Adaptive Particle Filter

The inertial navigation system has high short-term positioning accuracy but features cumulative error. Although no cumulative error occurs in WiFi fingerprint localization, mismatching is common. A popular technique thus involves integrating an inertial navigation system with WiFi fingerprint matchi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yunbing, Peng, Ao, Tang, Biyu, Xu, Hongying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8707401/
https://www.ncbi.nlm.nih.gov/pubmed/34960322
http://dx.doi.org/10.3390/s21248228
Descripción
Sumario:The inertial navigation system has high short-term positioning accuracy but features cumulative error. Although no cumulative error occurs in WiFi fingerprint localization, mismatching is common. A popular technique thus involves integrating an inertial navigation system with WiFi fingerprint matching. The particle filter uses dead reckoning as the state transfer equation and the difference between inertial navigation and WiFi fingerprint matching as the observation equation. Floor map information is introduced to detect whether particles cross the wall; if so, the weight is set to zero. For particles that do not cross the wall, considering the distance between current and historical particles, an adaptive particle filter is proposed. The adaptive factor increases the weight of highly trusted particles and reduces the weight of less trusted particles. This paper also proposes a multidimensional Euclidean distance algorithm to reduce WiFi fingerprint mismatching. Experimental results indicate that the proposed algorithm achieves high positioning accuracy.