Cargando…
Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes
A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708440/ https://www.ncbi.nlm.nih.gov/pubmed/34945331 http://dx.doi.org/10.3390/mi12121481 |
_version_ | 1784622685485006848 |
---|---|
author | Teo, Adrian J. T. Li, King Ho Holden |
author_facet | Teo, Adrian J. T. Li, King Ho Holden |
author_sort | Teo, Adrian J. T. |
collection | PubMed |
description | A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple wafer bonding. These out-of-plane comb drives are used for the bias actuation to achieve a larger tilt angle for micromirrors. The high-aspect-ratio mechanical structure is realized by the deep reactive ion etching of silicon, and the notching effect in silicon-on-insulator (SOI) wafers is minimized. The low-temperature bonding of two patterned wafers is achieved with fusion bonding, and a high bond strength up to 2.5 J/m(2) is obtained, which sustains subsequent processing steps. Furthermore, the dependency of resonant frequency on device dimensions is studied systematically, which provides useful guidelines for future design and application. A finalized device fabricated here was also tested to have a resonant frequency of 17.57 kHz and a tilt angle of 70° under an AC bias voltage of 2 V. |
format | Online Article Text |
id | pubmed-8708440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87084402021-12-25 Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes Teo, Adrian J. T. Li, King Ho Holden Micromachines (Basel) Article A high-aspect-ratio three-dimensionally (3D) stacked comb structure for micromirror application is demonstrated by wafer bonding technology in CMOS-compatible processes in this work. A vertically stacked comb structure is designed to circumvent any misalignment issues that could arise from multiple wafer bonding. These out-of-plane comb drives are used for the bias actuation to achieve a larger tilt angle for micromirrors. The high-aspect-ratio mechanical structure is realized by the deep reactive ion etching of silicon, and the notching effect in silicon-on-insulator (SOI) wafers is minimized. The low-temperature bonding of two patterned wafers is achieved with fusion bonding, and a high bond strength up to 2.5 J/m(2) is obtained, which sustains subsequent processing steps. Furthermore, the dependency of resonant frequency on device dimensions is studied systematically, which provides useful guidelines for future design and application. A finalized device fabricated here was also tested to have a resonant frequency of 17.57 kHz and a tilt angle of 70° under an AC bias voltage of 2 V. MDPI 2021-11-29 /pmc/articles/PMC8708440/ /pubmed/34945331 http://dx.doi.org/10.3390/mi12121481 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Teo, Adrian J. T. Li, King Ho Holden Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title | Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title_full | Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title_fullStr | Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title_full_unstemmed | Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title_short | Realization of Three-Dimensionally MEMS Stacked Comb Structures for Microactuators Using Low-Temperature Multi-Wafer Bonding with Self-Alignment Techniques in CMOS-Compatible Processes |
title_sort | realization of three-dimensionally mems stacked comb structures for microactuators using low-temperature multi-wafer bonding with self-alignment techniques in cmos-compatible processes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708440/ https://www.ncbi.nlm.nih.gov/pubmed/34945331 http://dx.doi.org/10.3390/mi12121481 |
work_keys_str_mv | AT teoadrianjt realizationofthreedimensionallymemsstackedcombstructuresformicroactuatorsusinglowtemperaturemultiwaferbondingwithselfalignmenttechniquesincmoscompatibleprocesses AT likinghoholden realizationofthreedimensionallymemsstackedcombstructuresformicroactuatorsusinglowtemperaturemultiwaferbondingwithselfalignmenttechniquesincmoscompatibleprocesses |