Cargando…

Theoretical Thermal-Mechanical Modelling and Experimental Validation of a Three-Dimensional (3D) Electrothermal Microgripper with Three Fingers

This paper presents the theoretical thermal-mechanical modeling and parameter analyses of a novel three-dimensional (3D) electrothermal microgripper with three fingers. Each finger of the microgripper is composed of a bi-directional Z-shaped electrothermal actuator and a 3D U-shaped electrothermal a...

Descripción completa

Detalles Bibliográficos
Autores principales: Si, Guoning, Sun, Liangying, Zhang, Zhuo, Zhang, Xuping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709151/
https://www.ncbi.nlm.nih.gov/pubmed/34945362
http://dx.doi.org/10.3390/mi12121512
Descripción
Sumario:This paper presents the theoretical thermal-mechanical modeling and parameter analyses of a novel three-dimensional (3D) electrothermal microgripper with three fingers. Each finger of the microgripper is composed of a bi-directional Z-shaped electrothermal actuator and a 3D U-shaped electrothermal actuator. The bi-directional Z-shaped electrothermal actuator provides the rectilinear motion in two directions. The novel 3D U-shaped electrothermal actuator offers motion with two degrees of freedom (DOFs) in the plane perpendicular to the movement of the Z-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with polyimide films. In this work, the static theoretical thermal-mechanical model of the 3D U-shaped electrothermal actuator is established. Finite-element analyses and experimental tests are conducted to verify and validate the model. With this model, parameter analyses are carried out to provide insight and guidance on further improving the 3D U-shaped actuator. Furthermore, a group of micro-manipulation experiments are conducted to demonstrate the flexibility and versality of the 3D microgripper on manipulate different types of small/micro-objects.