Cargando…
Bazedoxifene activates the angiotensin II-induced HUVEC hypertension model by targeting SIRT1
The shift in vascular function to vasoconstriction, pro-inflammatory state, oxidative stress and carbon monoxide deficiency may to endothelial dysfunction and injury, which is the key event in hypertension. Estrogen receptor modulators play a protective role in blood vessels. The present study aimed...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713184/ https://www.ncbi.nlm.nih.gov/pubmed/34970343 http://dx.doi.org/10.3892/etm.2021.11043 |
Sumario: | The shift in vascular function to vasoconstriction, pro-inflammatory state, oxidative stress and carbon monoxide deficiency may to endothelial dysfunction and injury, which is the key event in hypertension. Estrogen receptor modulators play a protective role in blood vessels. The present study aimed to investigate the effect of bazedoxifene, a selective estrogen receptor modulator, on human umbilical vein endothelial cells (HUVECs) and its potential underlying mechanism of action. The present study treated endothelial cells with different concentrations of bazedoxifene and determined cell viability using Cell Counting Kit-8 to screen for the optimal working concentration of bazedoxifene. Subsequently, an angiotensin II (AngII)-induced vascular endothelial cell model was established to observe the effect of bazedoxifene on AngII-induced endothelial cells. The concentrations of nitric oxide (NO) and reactive oxygen species (ROS) were detected using NO and ROS kits, respectively. The protein expression of sirtuin 1 (SIRT1), oxidative stress-related proteins and apoptosis-related proteins was detected using western blotting, and apoptosis was detected using a TUNEL assay. The results demonstrated that bazedoxifene promoted AngII-induced HUVEC viability, reduced the expression of stress-related proteins and inhibited apoptosis. Furthermore, bazedoxifene activated SIRT1 to promote the proliferation and inhibit the oxidative stress and apoptosis of AngII-induced HUVECs. These findings suggested that bazedoxifene could effectively promote AngII-induced HUVEC proliferation and inhibit cell apoptosis and oxidative stress. In addition, bazedoxifene protected HUVEC dysfunction induced by AngII by targeting the activation of SIRT1. In summary, bazedoxifene could improve the protective role against hypertension induced by AngII. |
---|