Cargando…

Improving Academic Performance and Retention of First-Year Biology Students through a Scalable Peer Mentorship Program

We examine the impact of Biology Mentoring and Engagement (BIOME) near-peer mentorship on 437 first-year undergraduate students over three cohort years. The BIOME course consists of ten, 50-minute meetings where groups of six first-year mentees meet with an upper-division student mentor to discuss t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilton, Mike, Katz, Daniel, Clairmont, Anthony, Gonzalez-Nino, Eduardo, Foltz, Kathy R., Christoffersen, Rolf E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Cell Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8715785/
https://www.ncbi.nlm.nih.gov/pubmed/34618540
http://dx.doi.org/10.1187/cbe.21-02-0039
Descripción
Sumario:We examine the impact of Biology Mentoring and Engagement (BIOME) near-peer mentorship on 437 first-year undergraduate students over three cohort years. The BIOME course consists of ten, 50-minute meetings where groups of six first-year mentees meet with an upper-division student mentor to discuss topics including metacognition, growth mindset, and effective study strategies. We employed a mixed-methods approach to evaluate the impact of BIOME on mentee academic outcomes. Initial ethnographic analysis revealed that BIOME influenced student study methods, approaches to academic challenges, and use of campus learning communities. We then constructed a novel, program-specific instrument to measure the implementation of these habits, a construct we named “academic habit complexity.” Regression analysis supported the hypothesis that enrollment in BIOME leads to students using more diverse approaches than their peers. Enrollment in BIOME, and the associated development of academic habit complexity, is related to higher course grades in General Chemistry, a biology major prerequisite. Finally, students participating in BIOME demonstrated improved short-term student retention as measured by increased enrollment in the subsequent prerequisite General Chemistry course. These results suggest that course-based near-peer mentorship may be an effective and scalable approach that can promote student academic success.