Cargando…
Embeddings from protein language models predict conservation and variant effects
The emergence of SARS-CoV-2 variants stressed the demand for tools allowing to interpret the effect of single amino acid variants (SAVs) on protein function. While Deep Mutational Scanning (DMS) sets continue to expand our understanding of the mutational landscape of single proteins, the results con...
Autores principales: | Marquet, Céline, Heinzinger, Michael, Olenyi, Tobias, Dallago, Christian, Erckert, Kyra, Bernhofer, Michael, Nechaev, Dmitrii, Rost, Burkhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716573/ https://www.ncbi.nlm.nih.gov/pubmed/34967936 http://dx.doi.org/10.1007/s00439-021-02411-y |
Ejemplares similares
-
Embeddings from deep learning transfer GO annotations beyond homology
por: Littmann, Maria, et al.
Publicado: (2021) -
LambdaPP: Fast and accessible protein‐specific phenotype predictions
por: Olenyi, Tobias, et al.
Publicado: (2023) -
Modeling aspects of the language of life through transfer-learning protein sequences
por: Heinzinger, Michael, et al.
Publicado: (2019) -
TMbed: transmembrane proteins predicted through language model embeddings
por: Bernhofer, Michael, et al.
Publicado: (2022) -
Light attention predicts protein location from the language of life
por: Stärk, Hannes, et al.
Publicado: (2021)