Cargando…
Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells
The efficacy of cisplatin (CDDP) has been demonstrated in the treatment of various cancers as monotherapy and combination therapy with immunotherapy. However, acquired CDDP resistance is a major obstacle to successful treatment. In the present study, the mechanisms underlying acquired CDDP resistanc...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717125/ https://www.ncbi.nlm.nih.gov/pubmed/34935060 http://dx.doi.org/10.3892/or.2021.8243 |
_version_ | 1784624470597566464 |
---|---|
author | Horibe, Sayo Ishikawa, Kaori Nakada, Kazuto Wake, Masaki Takeda, Norihiko Tanaka, Toru Kawauchi, Shoji Sasaki, Naoto Rikitake, Yoshiyuki |
author_facet | Horibe, Sayo Ishikawa, Kaori Nakada, Kazuto Wake, Masaki Takeda, Norihiko Tanaka, Toru Kawauchi, Shoji Sasaki, Naoto Rikitake, Yoshiyuki |
author_sort | Horibe, Sayo |
collection | PubMed |
description | The efficacy of cisplatin (CDDP) has been demonstrated in the treatment of various cancers as monotherapy and combination therapy with immunotherapy. However, acquired CDDP resistance is a major obstacle to successful treatment. In the present study, the mechanisms underlying acquired CDDP resistance were examined using ACR20 cells, which are CDDP-resistant cells derived from A549 lung cancer cells. CDDP induces cytotoxicity by binding nuclear DNA and generating reactive oxygen species (ROS). Contrary to our expectation, ROS levels were elevated in ACR20 cells not treated with CDDP. Pretreatment with an ROS inhibitor enhanced the sensitivity of ACR20 cells to CDDP and prevented the activation of nuclear factor (NF)-кB signaling and upregulation of inhibitor of apoptosis proteins (IAPs). Notably, evaluation of the mitochondrial oxygen consumption rate and mitochondrial superoxide levels revealed a deterioration of mitochondrial function in ACR20 cells. Mitochondrial DNA PCR-RFLP analysis revealed four mutations with varying percentage levels in ACR20 cells. In addition, in cytoplasmic hybrids with mitochondria from ACR20 cells, intrinsic ROS levels were elevated, expression of IAPs was increased, and complex I activity and sensitivity to CDDP were decreased. Analysis of three-dimensional structure data indicated that a mutation (ND2 F40L) may impact the proton translocation pathway, thereby affecting mitochondrial complex I activity. Together, these findings suggest that intrinsic ROS levels were elevated by mitochondrial DNA mutations, which decreased the sensitivity to CDDP via activation of NF-κB signaling and induction of IAP expression in ACR20 cells. These findings indicate that newly identified mutations in mitochondrial DNA may lead to acquired cisplatin resistance in cancer. |
format | Online Article Text |
id | pubmed-8717125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-87171252022-01-03 Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells Horibe, Sayo Ishikawa, Kaori Nakada, Kazuto Wake, Masaki Takeda, Norihiko Tanaka, Toru Kawauchi, Shoji Sasaki, Naoto Rikitake, Yoshiyuki Oncol Rep Articles The efficacy of cisplatin (CDDP) has been demonstrated in the treatment of various cancers as monotherapy and combination therapy with immunotherapy. However, acquired CDDP resistance is a major obstacle to successful treatment. In the present study, the mechanisms underlying acquired CDDP resistance were examined using ACR20 cells, which are CDDP-resistant cells derived from A549 lung cancer cells. CDDP induces cytotoxicity by binding nuclear DNA and generating reactive oxygen species (ROS). Contrary to our expectation, ROS levels were elevated in ACR20 cells not treated with CDDP. Pretreatment with an ROS inhibitor enhanced the sensitivity of ACR20 cells to CDDP and prevented the activation of nuclear factor (NF)-кB signaling and upregulation of inhibitor of apoptosis proteins (IAPs). Notably, evaluation of the mitochondrial oxygen consumption rate and mitochondrial superoxide levels revealed a deterioration of mitochondrial function in ACR20 cells. Mitochondrial DNA PCR-RFLP analysis revealed four mutations with varying percentage levels in ACR20 cells. In addition, in cytoplasmic hybrids with mitochondria from ACR20 cells, intrinsic ROS levels were elevated, expression of IAPs was increased, and complex I activity and sensitivity to CDDP were decreased. Analysis of three-dimensional structure data indicated that a mutation (ND2 F40L) may impact the proton translocation pathway, thereby affecting mitochondrial complex I activity. Together, these findings suggest that intrinsic ROS levels were elevated by mitochondrial DNA mutations, which decreased the sensitivity to CDDP via activation of NF-κB signaling and induction of IAP expression in ACR20 cells. These findings indicate that newly identified mutations in mitochondrial DNA may lead to acquired cisplatin resistance in cancer. D.A. Spandidos 2022-02 2021-12-20 /pmc/articles/PMC8717125/ /pubmed/34935060 http://dx.doi.org/10.3892/or.2021.8243 Text en Copyright: © Horibe et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Horibe, Sayo Ishikawa, Kaori Nakada, Kazuto Wake, Masaki Takeda, Norihiko Tanaka, Toru Kawauchi, Shoji Sasaki, Naoto Rikitake, Yoshiyuki Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title | Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title_full | Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title_fullStr | Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title_full_unstemmed | Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title_short | Mitochondrial DNA mutations are involved in the acquisition of cisplatin resistance in human lung cancer A549 cells |
title_sort | mitochondrial dna mutations are involved in the acquisition of cisplatin resistance in human lung cancer a549 cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717125/ https://www.ncbi.nlm.nih.gov/pubmed/34935060 http://dx.doi.org/10.3892/or.2021.8243 |
work_keys_str_mv | AT horibesayo mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT ishikawakaori mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT nakadakazuto mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT wakemasaki mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT takedanorihiko mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT tanakatoru mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT kawauchishoji mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT sasakinaoto mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells AT rikitakeyoshiyuki mitochondrialdnamutationsareinvolvedintheacquisitionofcisplatinresistanceinhumanlungcancera549cells |