Cargando…

Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease

β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar...

Descripción completa

Detalles Bibliográficos
Autores principales: Biechele, Gloria, Monasor, Laura Sebastian, Wind, Karin, Blume, Tanja, Parhizkar, Samira, Arzberger, Thomas, Sacher, Christian, Beyer, Leonie, Eckenweber, Florian, Gildehaus, Franz-Josef, von Ungern-Sternberg, Barbara, Willem, Michael, Bartenstein, Peter, Cumming, Paul, Rominger, Axel, Herms, Jochen, Lichtenthaler, Stefan F., Haass, Christian, Tahirovic, Sabina, Brendel, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Nuclear Medicine 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717179/
https://www.ncbi.nlm.nih.gov/pubmed/34016733
http://dx.doi.org/10.2967/jnumed.120.261858
_version_ 1784624481641168896
author Biechele, Gloria
Monasor, Laura Sebastian
Wind, Karin
Blume, Tanja
Parhizkar, Samira
Arzberger, Thomas
Sacher, Christian
Beyer, Leonie
Eckenweber, Florian
Gildehaus, Franz-Josef
von Ungern-Sternberg, Barbara
Willem, Michael
Bartenstein, Peter
Cumming, Paul
Rominger, Axel
Herms, Jochen
Lichtenthaler, Stefan F.
Haass, Christian
Tahirovic, Sabina
Brendel, Matthias
author_facet Biechele, Gloria
Monasor, Laura Sebastian
Wind, Karin
Blume, Tanja
Parhizkar, Samira
Arzberger, Thomas
Sacher, Christian
Beyer, Leonie
Eckenweber, Florian
Gildehaus, Franz-Josef
von Ungern-Sternberg, Barbara
Willem, Michael
Bartenstein, Peter
Cumming, Paul
Rominger, Axel
Herms, Jochen
Lichtenthaler, Stefan F.
Haass, Christian
Tahirovic, Sabina
Brendel, Matthias
author_sort Biechele, Gloria
collection PubMed
description β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aβ components to the in vivo Aβ PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aβ plaque compositions and performed regression analysis between immunohistochemistry and Aβ PET to determine the biochemical contributions to Aβ PET signal in vivo. Methods: We investigated groups of App(NL-G-F) and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal (18)F-florbetaben Aβ PET and with immunohistochemical analysis of the fibrillar and total Aβ burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aβ data (predictors) and Aβ PET results (outcome) for both Aβ mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2(−/−)) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aβ content alone sufficed to explain the Aβ PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aβ together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aβ PET signal (P < 0.001). Fibrillar Aβ burden had a 16-fold higher contribution to the Aβ PET signal than nonfibrillar Aβ. However, given the relatively greater abundance of nonfibrillar Aβ, we estimate that nonfibrillar Aβ produced 79% ± 25% of the net in vivo Aβ PET signal in App(NL-G-F) mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2(−/−) and APPPS1/Trem2(+/+) mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aβ PET signal. Conclusion: Taken together, the in vivo Aβ PET signal derives from the composite of fibrillar and nonfibrillar Aβ plaque components. Although fibrillar Aβ has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aβ plaque in AD-model mice contributes importantly to the PET signal.
format Online
Article
Text
id pubmed-8717179
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Society of Nuclear Medicine
record_format MEDLINE/PubMed
spelling pubmed-87171792022-07-01 Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease Biechele, Gloria Monasor, Laura Sebastian Wind, Karin Blume, Tanja Parhizkar, Samira Arzberger, Thomas Sacher, Christian Beyer, Leonie Eckenweber, Florian Gildehaus, Franz-Josef von Ungern-Sternberg, Barbara Willem, Michael Bartenstein, Peter Cumming, Paul Rominger, Axel Herms, Jochen Lichtenthaler, Stefan F. Haass, Christian Tahirovic, Sabina Brendel, Matthias J Nucl Med Basic Science Investigation β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aβ components to the in vivo Aβ PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aβ plaque compositions and performed regression analysis between immunohistochemistry and Aβ PET to determine the biochemical contributions to Aβ PET signal in vivo. Methods: We investigated groups of App(NL-G-F) and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal (18)F-florbetaben Aβ PET and with immunohistochemical analysis of the fibrillar and total Aβ burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aβ data (predictors) and Aβ PET results (outcome) for both Aβ mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2(−/−)) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aβ content alone sufficed to explain the Aβ PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aβ together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aβ PET signal (P < 0.001). Fibrillar Aβ burden had a 16-fold higher contribution to the Aβ PET signal than nonfibrillar Aβ. However, given the relatively greater abundance of nonfibrillar Aβ, we estimate that nonfibrillar Aβ produced 79% ± 25% of the net in vivo Aβ PET signal in App(NL-G-F) mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2(−/−) and APPPS1/Trem2(+/+) mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aβ PET signal. Conclusion: Taken together, the in vivo Aβ PET signal derives from the composite of fibrillar and nonfibrillar Aβ plaque components. Although fibrillar Aβ has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aβ plaque in AD-model mice contributes importantly to the PET signal. Society of Nuclear Medicine 2022-01 /pmc/articles/PMC8717179/ /pubmed/34016733 http://dx.doi.org/10.2967/jnumed.120.261858 Text en © 2022 by the Society of Nuclear Medicine and Molecular Imaging. https://creativecommons.org/licenses/by/4.0/Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml.
spellingShingle Basic Science Investigation
Biechele, Gloria
Monasor, Laura Sebastian
Wind, Karin
Blume, Tanja
Parhizkar, Samira
Arzberger, Thomas
Sacher, Christian
Beyer, Leonie
Eckenweber, Florian
Gildehaus, Franz-Josef
von Ungern-Sternberg, Barbara
Willem, Michael
Bartenstein, Peter
Cumming, Paul
Rominger, Axel
Herms, Jochen
Lichtenthaler, Stefan F.
Haass, Christian
Tahirovic, Sabina
Brendel, Matthias
Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title_full Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title_fullStr Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title_full_unstemmed Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title_short Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
title_sort glitter in the darkness? nonfibrillar β-amyloid plaque components significantly impact the β-amyloid pet signal in mouse models of alzheimer disease
topic Basic Science Investigation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717179/
https://www.ncbi.nlm.nih.gov/pubmed/34016733
http://dx.doi.org/10.2967/jnumed.120.261858
work_keys_str_mv AT biechelegloria glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT monasorlaurasebastian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT windkarin glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT blumetanja glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT parhizkarsamira glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT arzbergerthomas glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT sacherchristian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT beyerleonie glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT eckenweberflorian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT gildehausfranzjosef glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT vonungernsternbergbarbara glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT willemmichael glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT bartensteinpeter glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT cummingpaul glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT romingeraxel glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT hermsjochen glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT lichtenthalerstefanf glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT haasschristian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT tahirovicsabina glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease
AT brendelmatthias glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease