Cargando…
Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Nuclear Medicine
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717179/ https://www.ncbi.nlm.nih.gov/pubmed/34016733 http://dx.doi.org/10.2967/jnumed.120.261858 |
_version_ | 1784624481641168896 |
---|---|
author | Biechele, Gloria Monasor, Laura Sebastian Wind, Karin Blume, Tanja Parhizkar, Samira Arzberger, Thomas Sacher, Christian Beyer, Leonie Eckenweber, Florian Gildehaus, Franz-Josef von Ungern-Sternberg, Barbara Willem, Michael Bartenstein, Peter Cumming, Paul Rominger, Axel Herms, Jochen Lichtenthaler, Stefan F. Haass, Christian Tahirovic, Sabina Brendel, Matthias |
author_facet | Biechele, Gloria Monasor, Laura Sebastian Wind, Karin Blume, Tanja Parhizkar, Samira Arzberger, Thomas Sacher, Christian Beyer, Leonie Eckenweber, Florian Gildehaus, Franz-Josef von Ungern-Sternberg, Barbara Willem, Michael Bartenstein, Peter Cumming, Paul Rominger, Axel Herms, Jochen Lichtenthaler, Stefan F. Haass, Christian Tahirovic, Sabina Brendel, Matthias |
author_sort | Biechele, Gloria |
collection | PubMed |
description | β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aβ components to the in vivo Aβ PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aβ plaque compositions and performed regression analysis between immunohistochemistry and Aβ PET to determine the biochemical contributions to Aβ PET signal in vivo. Methods: We investigated groups of App(NL-G-F) and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal (18)F-florbetaben Aβ PET and with immunohistochemical analysis of the fibrillar and total Aβ burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aβ data (predictors) and Aβ PET results (outcome) for both Aβ mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2(−/−)) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aβ content alone sufficed to explain the Aβ PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aβ together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aβ PET signal (P < 0.001). Fibrillar Aβ burden had a 16-fold higher contribution to the Aβ PET signal than nonfibrillar Aβ. However, given the relatively greater abundance of nonfibrillar Aβ, we estimate that nonfibrillar Aβ produced 79% ± 25% of the net in vivo Aβ PET signal in App(NL-G-F) mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2(−/−) and APPPS1/Trem2(+/+) mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aβ PET signal. Conclusion: Taken together, the in vivo Aβ PET signal derives from the composite of fibrillar and nonfibrillar Aβ plaque components. Although fibrillar Aβ has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aβ plaque in AD-model mice contributes importantly to the PET signal. |
format | Online Article Text |
id | pubmed-8717179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Society of Nuclear Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-87171792022-07-01 Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease Biechele, Gloria Monasor, Laura Sebastian Wind, Karin Blume, Tanja Parhizkar, Samira Arzberger, Thomas Sacher, Christian Beyer, Leonie Eckenweber, Florian Gildehaus, Franz-Josef von Ungern-Sternberg, Barbara Willem, Michael Bartenstein, Peter Cumming, Paul Rominger, Axel Herms, Jochen Lichtenthaler, Stefan F. Haass, Christian Tahirovic, Sabina Brendel, Matthias J Nucl Med Basic Science Investigation β-amyloid (Aβ) PET is an important tool for quantification of amyloidosis in the brain of suspected Alzheimer disease (AD) patients and transgenic AD mouse models. Despite the excellent correlation of Aβ PET with gold standard immunohistochemical assessments, the relative contributions of fibrillar and nonfibrillar Aβ components to the in vivo Aβ PET signal remain unclear. Thus, we obtained 2 murine cerebral amyloidosis models that present with distinct Aβ plaque compositions and performed regression analysis between immunohistochemistry and Aβ PET to determine the biochemical contributions to Aβ PET signal in vivo. Methods: We investigated groups of App(NL-G-F) and APPPS1 mice at 3, 6, and 12 mo of age by longitudinal (18)F-florbetaben Aβ PET and with immunohistochemical analysis of the fibrillar and total Aβ burdens. We then applied group-level intermodality regression models using age- and genotype-matched sets of fibrillar and nonfibrillar Aβ data (predictors) and Aβ PET results (outcome) for both Aβ mouse models. An independent group of double-hit APPPS1 mice with dysfunctional microglia due to knockout of triggering receptor expression on myeloid cells 2 (Trem2(−/−)) served for validation and evaluation of translational impact. Results: Neither fibrillar nor nonfibrillar Aβ content alone sufficed to explain the Aβ PET findings in either AD model. However, a regression model compiling fibrillar and nonfibrillar Aβ together with the estimate of individual heterogeneity and age at scanning could explain a 93% of variance of the Aβ PET signal (P < 0.001). Fibrillar Aβ burden had a 16-fold higher contribution to the Aβ PET signal than nonfibrillar Aβ. However, given the relatively greater abundance of nonfibrillar Aβ, we estimate that nonfibrillar Aβ produced 79% ± 25% of the net in vivo Aβ PET signal in App(NL-G-F) mice and 25% ± 12% in APPPS1 mice. Corresponding results in separate groups of APPPS1/Trem2(−/−) and APPPS1/Trem2(+/+) mice validated the calculated regression factors and revealed that the altered fibrillarity due to Trem2 knockout impacts the Aβ PET signal. Conclusion: Taken together, the in vivo Aβ PET signal derives from the composite of fibrillar and nonfibrillar Aβ plaque components. Although fibrillar Aβ has inherently higher PET tracer binding, the greater abundance of nonfibrillar Aβ plaque in AD-model mice contributes importantly to the PET signal. Society of Nuclear Medicine 2022-01 /pmc/articles/PMC8717179/ /pubmed/34016733 http://dx.doi.org/10.2967/jnumed.120.261858 Text en © 2022 by the Society of Nuclear Medicine and Molecular Imaging. https://creativecommons.org/licenses/by/4.0/Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications. License: https://creativecommons.org/licenses/by/4.0/. Details: http://jnm.snmjournals.org/site/misc/permission.xhtml. |
spellingShingle | Basic Science Investigation Biechele, Gloria Monasor, Laura Sebastian Wind, Karin Blume, Tanja Parhizkar, Samira Arzberger, Thomas Sacher, Christian Beyer, Leonie Eckenweber, Florian Gildehaus, Franz-Josef von Ungern-Sternberg, Barbara Willem, Michael Bartenstein, Peter Cumming, Paul Rominger, Axel Herms, Jochen Lichtenthaler, Stefan F. Haass, Christian Tahirovic, Sabina Brendel, Matthias Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title | Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title_full | Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title_fullStr | Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title_full_unstemmed | Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title_short | Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease |
title_sort | glitter in the darkness? nonfibrillar β-amyloid plaque components significantly impact the β-amyloid pet signal in mouse models of alzheimer disease |
topic | Basic Science Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717179/ https://www.ncbi.nlm.nih.gov/pubmed/34016733 http://dx.doi.org/10.2967/jnumed.120.261858 |
work_keys_str_mv | AT biechelegloria glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT monasorlaurasebastian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT windkarin glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT blumetanja glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT parhizkarsamira glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT arzbergerthomas glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT sacherchristian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT beyerleonie glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT eckenweberflorian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT gildehausfranzjosef glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT vonungernsternbergbarbara glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT willemmichael glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT bartensteinpeter glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT cummingpaul glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT romingeraxel glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT hermsjochen glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT lichtenthalerstefanf glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT haasschristian glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT tahirovicsabina glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease AT brendelmatthias glitterinthedarknessnonfibrillarbamyloidplaquecomponentssignificantlyimpactthebamyloidpetsignalinmousemodelsofalzheimerdisease |