Cargando…
Neural network-based cooling design for high-performance processors
Ultra-high chip power densities that are expected to surpass 1-2kW/cm(2) in future high-performance systems cannot be easily handled by conventional cooling methods. Various emerging cooling methods, such as liquid cooling via microchannels, thermoelectric coolers (TECs), two-phase vapor chambers, a...
Autores principales: | Yuan, Zihao, Coskun, Ayse K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717464/ https://www.ncbi.nlm.nih.gov/pubmed/35005532 http://dx.doi.org/10.1016/j.isci.2021.103582 |
Ejemplares similares
-
Design of Convolutional Neural Network Processor Based on FPGA Resource Multiplexing Architecture
por: Yan, Fei, et al.
Publicado: (2022) -
Deep quantum neural networks on a superconducting processor
por: Pan, Xiaoxuan, et al.
Publicado: (2023) -
Energy efficient high performance processors: recent approaches for designing green high performance computing
por: Haj-Yahya, Jawad, et al.
Publicado: (2018) -
Microfluidic-based processors and circuits design
por: Azizbeigi, Kasra, et al.
Publicado: (2021) -
Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors
por: Junaid, Muhammad, et al.
Publicado: (2022)