Cargando…

Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves

Glucose-responsive ATP-sensitive potassium channels (K(ATP)) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of K(ATP) in the periph...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakai-Shimoda, Hiromi, Himeno, Tatsuhito, Okawa, Tetsuji, Miura-Yura, Emiri, Sasajima, Sachiko, Kato, Makoto, Yamada, Yuichiro, Morishita, Yoshiaki, Tsunekawa, Shin, Kato, Yoshiro, Seino, Yusuke, Inoue, Rieko, Kondo, Masaki, Seino, Susumu, Naruse, Keiko, Kato, Koichi, Mizukami, Hiroki, Nakamura, Jiro, Kamiya, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719014/
https://www.ncbi.nlm.nih.gov/pubmed/35005553
http://dx.doi.org/10.1016/j.isci.2021.103609
_version_ 1784624854107947008
author Nakai-Shimoda, Hiromi
Himeno, Tatsuhito
Okawa, Tetsuji
Miura-Yura, Emiri
Sasajima, Sachiko
Kato, Makoto
Yamada, Yuichiro
Morishita, Yoshiaki
Tsunekawa, Shin
Kato, Yoshiro
Seino, Yusuke
Inoue, Rieko
Kondo, Masaki
Seino, Susumu
Naruse, Keiko
Kato, Koichi
Mizukami, Hiroki
Nakamura, Jiro
Kamiya, Hideki
author_facet Nakai-Shimoda, Hiromi
Himeno, Tatsuhito
Okawa, Tetsuji
Miura-Yura, Emiri
Sasajima, Sachiko
Kato, Makoto
Yamada, Yuichiro
Morishita, Yoshiaki
Tsunekawa, Shin
Kato, Yoshiro
Seino, Yusuke
Inoue, Rieko
Kondo, Masaki
Seino, Susumu
Naruse, Keiko
Kato, Koichi
Mizukami, Hiroki
Nakamura, Jiro
Kamiya, Hideki
author_sort Nakai-Shimoda, Hiromi
collection PubMed
description Glucose-responsive ATP-sensitive potassium channels (K(ATP)) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of K(ATP) in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of K(ATP) in the PNS using K(ATP)-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. K(ATP) subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, K(ATP) may contribute to the development of peripheral neuropathy.
format Online
Article
Text
id pubmed-8719014
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-87190142022-01-07 Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves Nakai-Shimoda, Hiromi Himeno, Tatsuhito Okawa, Tetsuji Miura-Yura, Emiri Sasajima, Sachiko Kato, Makoto Yamada, Yuichiro Morishita, Yoshiaki Tsunekawa, Shin Kato, Yoshiro Seino, Yusuke Inoue, Rieko Kondo, Masaki Seino, Susumu Naruse, Keiko Kato, Koichi Mizukami, Hiroki Nakamura, Jiro Kamiya, Hideki iScience Article Glucose-responsive ATP-sensitive potassium channels (K(ATP)) are expressed in a variety of tissues including nervous systems. The depolarization of the membrane potential induced by glucose may lead to hyperexcitability of neurons and induce excitotoxicity. However, the roles of K(ATP) in the peripheral nervous system (PNS) are poorly understood. Here, we determine the roles of K(ATP) in the PNS using K(ATP)-deficient (Kir6.2-deficient) mice. We demonstrate that neurite outgrowth of dorsal root ganglion (DRG) neurons was reduced by channel closers sulfonylureas. However, a channel opener diazoxide elongated the neurite. K(ATP) subunits were expressed in mouse DRG, and expression of certain subunits including Kir6.2 was increased in diabetic mice. In Kir6.2-deficient mice, the current perception threshold, thermal perception threshold, and sensory nerve conduction velocity were impaired. Electron microscopy revealed a reduction of unmyelinated and small myelinated fibers in the sural nerves. In conclusion, K(ATP) may contribute to the development of peripheral neuropathy. Elsevier 2021-12-11 /pmc/articles/PMC8719014/ /pubmed/35005553 http://dx.doi.org/10.1016/j.isci.2021.103609 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nakai-Shimoda, Hiromi
Himeno, Tatsuhito
Okawa, Tetsuji
Miura-Yura, Emiri
Sasajima, Sachiko
Kato, Makoto
Yamada, Yuichiro
Morishita, Yoshiaki
Tsunekawa, Shin
Kato, Yoshiro
Seino, Yusuke
Inoue, Rieko
Kondo, Masaki
Seino, Susumu
Naruse, Keiko
Kato, Koichi
Mizukami, Hiroki
Nakamura, Jiro
Kamiya, Hideki
Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title_full Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title_fullStr Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title_full_unstemmed Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title_short Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
title_sort kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719014/
https://www.ncbi.nlm.nih.gov/pubmed/35005553
http://dx.doi.org/10.1016/j.isci.2021.103609
work_keys_str_mv AT nakaishimodahiromi kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT himenotatsuhito kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT okawatetsuji kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT miurayuraemiri kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT sasajimasachiko kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT katomakoto kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT yamadayuichiro kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT morishitayoshiaki kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT tsunekawashin kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT katoyoshiro kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT seinoyusuke kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT inouerieko kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT kondomasaki kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT seinosusumu kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT narusekeiko kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT katokoichi kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT mizukamihiroki kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT nakamurajiro kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves
AT kamiyahideki kir62deficientmicedevelopsomatosensorydysfunctionandaxonallossintheperipheralnerves