Cargando…

A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells

We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through...

Descripción completa

Detalles Bibliográficos
Autores principales: Unosson, Måns, Brancaccio, Marco, Hastings, Michael, Johansen, Adam M., Finkenstädt, Bärbel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/
https://www.ncbi.nlm.nih.gov/pubmed/34919546
http://dx.doi.org/10.1371/journal.pcbi.1009698
_version_ 1784625000417853440
author Unosson, Måns
Brancaccio, Marco
Hastings, Michael
Johansen, Adam M.
Finkenstädt, Bärbel
author_facet Unosson, Måns
Brancaccio, Marco
Hastings, Michael
Johansen, Adam M.
Finkenstädt, Bärbel
author_sort Unosson, Måns
collection PubMed
description We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells’ ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.
format Online
Article
Text
id pubmed-8719734
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-87197342022-01-01 A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells Unosson, Måns Brancaccio, Marco Hastings, Michael Johansen, Adam M. Finkenstädt, Bärbel PLoS Comput Biol Research Article We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells’ ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment. Public Library of Science 2021-12-17 /pmc/articles/PMC8719734/ /pubmed/34919546 http://dx.doi.org/10.1371/journal.pcbi.1009698 Text en © 2021 Unosson et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Unosson, Måns
Brancaccio, Marco
Hastings, Michael
Johansen, Adam M.
Finkenstädt, Bärbel
A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title_full A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title_fullStr A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title_full_unstemmed A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title_short A spatio-temporal model to reveal oscillator phenotypes in molecular clocks: Parameter estimation elucidates circadian gene transcription dynamics in single-cells
title_sort spatio-temporal model to reveal oscillator phenotypes in molecular clocks: parameter estimation elucidates circadian gene transcription dynamics in single-cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719734/
https://www.ncbi.nlm.nih.gov/pubmed/34919546
http://dx.doi.org/10.1371/journal.pcbi.1009698
work_keys_str_mv AT unossonmans aspatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT brancacciomarco aspatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT hastingsmichael aspatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT johansenadamm aspatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT finkenstadtbarbel aspatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT unossonmans spatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT brancacciomarco spatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT hastingsmichael spatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT johansenadamm spatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells
AT finkenstadtbarbel spatiotemporalmodeltorevealoscillatorphenotypesinmolecularclocksparameterestimationelucidatescircadiangenetranscriptiondynamicsinsinglecells