Cargando…
IL4-10 Fusion Protein Shows DMOAD Activity in a Rat Osteoarthritis Model
OBJECTIVE: Ideally, disease-modifying osteoarthritis (OA) drugs (DMOAD) should combine chondroprotective, anti-inflammatory, and analgesic effects in a single molecule. A fusion protein of interleukin-4 (IL-4) and IL-10 (IL4-10 FP) possesses these combined effects. In this study, the DMOAD activity...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721682/ https://www.ncbi.nlm.nih.gov/pubmed/34159843 http://dx.doi.org/10.1177/19476035211026736 |
Sumario: | OBJECTIVE: Ideally, disease-modifying osteoarthritis (OA) drugs (DMOAD) should combine chondroprotective, anti-inflammatory, and analgesic effects in a single molecule. A fusion protein of interleukin-4 (IL-4) and IL-10 (IL4-10 FP) possesses these combined effects. In this study, the DMOAD activity of rat IL4-10 FP (rIL4-10 FP) was tested in a rat model of surgically induced OA under metabolic dysregulation. DESIGN: rIL4-10 FP was produced with HEK293F cells. Bioactivity of purified rIL4-10 FP was determined in a whole blood assay. Male Wistar rats (n = 20) were fed a high-fat diet (HFD) to induce metabolic dysregulation. After 12 weeks, OA was induced according to the Groove model. Two weeks after OA induction, rats were randomly divided into 2 groups and treated with 10 weekly, intra-articular injections of either rIL4-10 FP (n = 10) or phosphate buffered saline (PBS; n = 10). Possible antibody formation was evaluated using ELISA, cartilage degeneration and synovial inflammation were evaluated by histology and mechanical allodynia was evaluated using the von Frey test. RESULTS: Intra-articular injections with rIL4-10 FP significantly reduced cartilage degeneration (P = 0.042) and decreased mechanical allodynia (P < 0.001) compared with PBS. Only mild synovial inflammation was found (nonsignificant), limiting detection of putative anti-inflammatory effects. Multiple injections of rIL4-10 FP did not induce antibodies against rIL4-10 FP. CONCLUSION: rIL4-10 FP showed chondroprotective and analgesic activity in a rat OA model with moderate cartilage damage, mild synovial inflammation, and pain. Future studies will need to address whether less frequent intra-articular injections, for example, with formulations with increased residence time, would also lead to DMOAD activity. |
---|