Cargando…

Inhibiting spinal secretory phospholipase A(2) after painful nerve root injury attenuates established pain and spinal neuronal hyperexcitability by altering spinal glutamatergic signaling

Neuropathic injury is accompanied by chronic inflammation contributing to the onset and maintenance of pain after an initial insult. In addition to their roles in promoting immune cell activation, inflammatory mediators like secretory phospholipase A(2) (sPLA(2)) modulate nociceptive and excitatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Kartha, Sonia, Ghimire, Prabesh, Winkelstein, Beth A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721705/
https://www.ncbi.nlm.nih.gov/pubmed/34919471
http://dx.doi.org/10.1177/17448069211066221
Descripción
Sumario:Neuropathic injury is accompanied by chronic inflammation contributing to the onset and maintenance of pain after an initial insult. In addition to their roles in promoting immune cell activation, inflammatory mediators like secretory phospholipase A(2) (sPLA(2)) modulate nociceptive and excitatory neuronal signaling during the initiation of pain through hydrolytic activity. Despite having a known role in glial activation and cytokine release, it is unknown if sPLA(2) contributes to the maintenance of painful neuropathy and spinal hyperexcitability later after neural injury. Using a well-established model of painful nerve root compression, this study investigated if inhibiting spinal sPLA(2) 7 days after painful injury modulates the behavioral sensitivity and/or spinal dorsal horn excitability that is typically evident. The effects of sPLA(2) inhibition on altered spinal glutamatergic signaling was also probed by measuring spinal intracellular glutamate levels and spinal glutamate transporter (GLAST and GLT1) and receptor (mGluR5, GluR1, and NR1) expression. Spinal sPLA(2) inhibition at day 7 abolishes behavioral sensitivity, reduces both evoked and spontaneous neuronal firing in the spinal cord, and restores the distribution of neuronal phenotypes to those of control conditions. Inhibiting spinal sPLA(2) also increases intracellular glutamate concentrations and restores spinal expression of GLAST, GLT1, mGluR5, and GluR1 to uninjured expression with no effect on NR1. These findings establish a role for spinal sPLA(2) in maintaining pain and central sensitization after neural injury and suggest this may be via exacerbating glutamate excitotoxicity in the spinal cord.