Cargando…
Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data
BACKGROUND: Constructing gene coexpression networks is a powerful approach for analyzing high-throughput gene expression data towards module identification, gene function prediction, and disease-gene prioritization. While optimal workflows for constructing coexpression networks, including good choic...
Autores principales: | Johnson, Kayla A., Krishnan, Arjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721966/ https://www.ncbi.nlm.nih.gov/pubmed/34980209 http://dx.doi.org/10.1186/s13059-021-02568-9 |
Ejemplares similares
-
Debiased personalized gene coexpression networks for population-scale scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2023) -
SCnorm: robust normalization of single-cell RNA-seq data
por: Bacher, Rhonda, et al.
Publicado: (2017) -
Robust gene coexpression networks using signed distance correlation
por: Pardo-Diaz, Javier, et al.
Publicado: (2021) -
Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview
por: Skinner, Jeff, et al.
Publicado: (2011) -
Stratification of Gene Coexpression Patterns and GO Function Mining for a RNA-Seq Data Series
por: Zhao, Hui, et al.
Publicado: (2014)