Cargando…
tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR
Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemother...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722728/ https://www.ncbi.nlm.nih.gov/pubmed/34928935 http://dx.doi.org/10.1371/journal.pgen.1009953 |
_version_ | 1784625575811350528 |
---|---|
author | Guillon, Jordan Coquelet, Hugo Leman, Géraldine Toutain, Bertrand Petit, Coralie Henry, Cécile Boissard, Alice Guette, Catherine Coqueret, Olivier |
author_facet | Guillon, Jordan Coquelet, Hugo Leman, Géraldine Toutain, Bertrand Petit, Coralie Henry, Cécile Boissard, Alice Guette, Catherine Coqueret, Olivier |
author_sort | Guillon, Jordan |
collection | PubMed |
description | Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway. |
format | Online Article Text |
id | pubmed-8722728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-87227282022-01-04 tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR Guillon, Jordan Coquelet, Hugo Leman, Géraldine Toutain, Bertrand Petit, Coralie Henry, Cécile Boissard, Alice Guette, Catherine Coqueret, Olivier PLoS Genet Research Article Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway. Public Library of Science 2021-12-20 /pmc/articles/PMC8722728/ /pubmed/34928935 http://dx.doi.org/10.1371/journal.pgen.1009953 Text en © 2021 Guillon et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Guillon, Jordan Coquelet, Hugo Leman, Géraldine Toutain, Bertrand Petit, Coralie Henry, Cécile Boissard, Alice Guette, Catherine Coqueret, Olivier tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title | tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title_full | tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title_fullStr | tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title_full_unstemmed | tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title_short | tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR |
title_sort | trna biogenesis and specific aminoacyl-trna synthetases regulate senescence stability under the control of mtor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722728/ https://www.ncbi.nlm.nih.gov/pubmed/34928935 http://dx.doi.org/10.1371/journal.pgen.1009953 |
work_keys_str_mv | AT guillonjordan trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT coquelethugo trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT lemangeraldine trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT toutainbertrand trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT petitcoralie trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT henrycecile trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT boissardalice trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT guettecatherine trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor AT coqueretolivier trnabiogenesisandspecificaminoacyltrnasynthetasesregulatesenescencestabilityunderthecontrolofmtor |