Cargando…
DLAB: deep learning methods for structure-based virtual screening of antibodies
MOTIVATION: Antibodies are one of the most important classes of pharmaceuticals, with over 80 approved molecules currently in use against a wide variety of diseases. The drug discovery process for antibody therapeutic candidates however is time- and cost-intensive and heavily reliant on in vivo and...
Autores principales: | Schneider, Constantin, Buchanan, Andrew, Taddese, Bruck, Deane, Charlotte M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8723137/ https://www.ncbi.nlm.nih.gov/pubmed/34546288 http://dx.doi.org/10.1093/bioinformatics/btab660 |
Ejemplares similares
-
Thera-SAbDab: the Therapeutic Structural Antibody Database
por: Raybould, Matthew I J, et al.
Publicado: (2020) -
SCALOP: sequence-based antibody canonical loop structure annotation
por: Wong, Wing Ki, et al.
Publicado: (2019) -
Five computational developability guidelines for therapeutic antibody profiling
por: Raybould, Matthew I. J., et al.
Publicado: (2019) -
Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope
por: Wong, Wing Ki, et al.
Publicado: (2021) -
Deep learning and virtual drug screening
por: Carpenter, Kristy A, et al.
Publicado: (2018)