Cargando…

Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine

Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the...

Descripción completa

Detalles Bibliográficos
Autores principales: Pegg, Cassandra L., Phung, Toan K., Caboche, Christopher H., Niamsuphap, Suchada, Bern, Marshall, Howell, Kate, Schulz, Benjamin L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724608/
https://www.ncbi.nlm.nih.gov/pubmed/32938748
http://dx.doi.org/10.1074/mcp.RA120.002181
_version_ 1784625941124743168
author Pegg, Cassandra L.
Phung, Toan K.
Caboche, Christopher H.
Niamsuphap, Suchada
Bern, Marshall
Howell, Kate
Schulz, Benjamin L.
author_facet Pegg, Cassandra L.
Phung, Toan K.
Caboche, Christopher H.
Niamsuphap, Suchada
Bern, Marshall
Howell, Kate
Schulz, Benjamin L.
author_sort Pegg, Cassandra L.
collection PubMed
description Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analyzed the glycoproteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyze sequential window acquisition of all theoretical mass spectra data-independent acquisition mass spectrometry data based on glycopeptides identified by Byonic (Protein Metrics; version 2.13.17). We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the liqueur de tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared with 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. To our knowledge, this work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic sequential window acquisition of all theoretical mass spectra/data-independent acquisition workflow that is broadly applicable to other sample types.
format Online
Article
Text
id pubmed-8724608
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-87246082022-01-11 Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine Pegg, Cassandra L. Phung, Toan K. Caboche, Christopher H. Niamsuphap, Suchada Bern, Marshall Howell, Kate Schulz, Benjamin L. Mol Cell Proteomics Research Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analyzed the glycoproteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyze sequential window acquisition of all theoretical mass spectra data-independent acquisition mass spectrometry data based on glycopeptides identified by Byonic (Protein Metrics; version 2.13.17). We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the liqueur de tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared with 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. To our knowledge, this work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic sequential window acquisition of all theoretical mass spectra/data-independent acquisition workflow that is broadly applicable to other sample types. American Society for Biochemistry and Molecular Biology 2020-12-21 /pmc/articles/PMC8724608/ /pubmed/32938748 http://dx.doi.org/10.1074/mcp.RA120.002181 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research
Pegg, Cassandra L.
Phung, Toan K.
Caboche, Christopher H.
Niamsuphap, Suchada
Bern, Marshall
Howell, Kate
Schulz, Benjamin L.
Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title_full Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title_fullStr Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title_full_unstemmed Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title_short Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine
title_sort quantitative data-independent acquisition glycoproteomics of sparkling wine
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724608/
https://www.ncbi.nlm.nih.gov/pubmed/32938748
http://dx.doi.org/10.1074/mcp.RA120.002181
work_keys_str_mv AT peggcassandral quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT phungtoank quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT cabochechristopherh quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT niamsuphapsuchada quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT bernmarshall quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT howellkate quantitativedataindependentacquisitionglycoproteomicsofsparklingwine
AT schulzbenjaminl quantitativedataindependentacquisitionglycoproteomicsofsparklingwine