Cargando…
Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic (18)F-FDG PET Brain Studies
This work set out to develop a motion-correction approach aided by conditional generative adversarial network (cGAN) methodology that allows reliable, data-driven determination of involuntary subject motion during dynamic (18)F-FDG brain studies. Methods: Ten healthy volunteers (5 men/5 women; mean...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Nuclear Medicine
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729870/ https://www.ncbi.nlm.nih.gov/pubmed/33246982 http://dx.doi.org/10.2967/jnumed.120.248856 |