Cargando…
Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing
BACKGROUND: Sequencing technologies are prone to errors, making error correction (EC) necessary for downstream applications. EC tools need to be manually configured for optimal performance. We find that the optimal parameters (e.g., k-mer size) are both tool- and dataset-dependent. Moreover, evaluat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734100/ https://www.ncbi.nlm.nih.gov/pubmed/34991450 http://dx.doi.org/10.1186/s12859-021-04547-0 |