Cargando…
Detection and quantitation of host cell proteins in monoclonal antibody drug products using automated sample preparation and data-independent acquisition LC-MS/MS
Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740166/ https://www.ncbi.nlm.nih.gov/pubmed/35028177 http://dx.doi.org/10.1016/j.jpha.2021.05.002 |
Sumario: | Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg. The current standard analytical approach for this procedure is based on ELISA; however, this approach only measures the overall HCP content. Therefore, the use of orthogonal methods, such as liquid chromatography-mass spectrometry (LC-MS), has been established, as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present. In the present study, a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation, in combination with a data-independent acquisition (DIA) LC-MS analysis, was established. Employing the same instrumental setup commonly used for peptide mapping analysis of mAbs allows for its quick and easy implementation into pre-existing workflows, avoiding the need for dedicated instrumentation or personnel. Thereby, quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions. |
---|