Cargando…
A novel graph convolutional neural network for predicting interaction sites on protein kinase inhibitors in phosphorylation
Protein kinase-inhibitor interactions are key to the phosphorylation of proteins involved in cell proliferation, differentiation, and apoptosis, which shows the importance of binding mechanism research and kinase inhibitor design. In this study, a novel machine learning module (i.e., the WL Box) was...
Autores principales: | Wang, Feiqi, Chen, Yun-Ti, Yang, Jinn-Moon, Akutsu, Tatsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742007/ https://www.ncbi.nlm.nih.gov/pubmed/34997142 http://dx.doi.org/10.1038/s41598-021-04230-7 |
Ejemplares similares
-
Identification of pan-kinase-family inhibitors using graph convolutional networks to reveal family-sensitive pre-moieties
por: Lin, Xiang-Yu, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites
por: Zhang, Jidong, et al.
Publicado: (2022) -
GCRNN: graph convolutional recurrent neural network for compound–protein interaction prediction
por: Elbasani, Ermal, et al.
Publicado: (2022) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023)