Cargando…
Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow
The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological he...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742075/ https://www.ncbi.nlm.nih.gov/pubmed/34997036 http://dx.doi.org/10.1038/s41598-021-04034-9 |
_version_ | 1784629635633381376 |
---|---|
author | Pham, Oanh L. Feher, Samuel E. Nguyen, Quoc T. Papavassiliou, Dimitrios V. |
author_facet | Pham, Oanh L. Feher, Samuel E. Nguyen, Quoc T. Papavassiliou, Dimitrios V. |
author_sort | Pham, Oanh L. |
collection | PubMed |
description | The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime. |
format | Online Article Text |
id | pubmed-8742075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87420752022-01-11 Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow Pham, Oanh L. Feher, Samuel E. Nguyen, Quoc T. Papavassiliou, Dimitrios V. Sci Rep Article The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime. Nature Publishing Group UK 2022-01-07 /pmc/articles/PMC8742075/ /pubmed/34997036 http://dx.doi.org/10.1038/s41598-021-04034-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Pham, Oanh L. Feher, Samuel E. Nguyen, Quoc T. Papavassiliou, Dimitrios V. Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title | Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title_full | Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title_fullStr | Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title_full_unstemmed | Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title_short | Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow |
title_sort | distribution and history of extensional stresses on vwf surrogate molecules in turbulent flow |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742075/ https://www.ncbi.nlm.nih.gov/pubmed/34997036 http://dx.doi.org/10.1038/s41598-021-04034-9 |
work_keys_str_mv | AT phamoanhl distributionandhistoryofextensionalstressesonvwfsurrogatemoleculesinturbulentflow AT fehersamuele distributionandhistoryofextensionalstressesonvwfsurrogatemoleculesinturbulentflow AT nguyenquoct distributionandhistoryofextensionalstressesonvwfsurrogatemoleculesinturbulentflow AT papavassilioudimitriosv distributionandhistoryofextensionalstressesonvwfsurrogatemoleculesinturbulentflow |