Cargando…
Leveraging pleiotropic association using sparse group variable selection in genomics data
BACKGROUND: Genome-wide association studies (GWAS) have identified genetic variants associated with multiple complex diseases. We can leverage this phenomenon, known as pleiotropy, to integrate multiple data sources in a joint analysis. Often integrating additional information such as gene pathway k...
Autores principales: | Sutton, Matthew, Sugier, Pierre-Emmanuel, Truong, Therese, Liquet, Benoit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742466/ https://www.ncbi.nlm.nih.gov/pubmed/34996381 http://dx.doi.org/10.1186/s12874-021-01491-8 |
Ejemplares similares
-
GCPBayes pipeline: a tool for exploring pleiotropy at the gene level
por: Asgari, Yazdan, et al.
Publicado: (2023) -
Penalized partial least squares for pleiotropy
por: Broc, Camilo, et al.
Publicado: (2021) -
Possibilistic Estimation of Distributions to Leverage Sparse Data in Machine Learning
por: Tettamanzi, Andrea G. B., et al.
Publicado: (2020) -
Leveraging Genomic Annotations and Pleiotropic Enrichment for Improved Replication Rates in Schizophrenia GWAS
por: Wang, Yunpeng, et al.
Publicado: (2016) -
Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data
por: O’Shea, Robert J, et al.
Publicado: (2021)