Cargando…
Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting
Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of H(2)O from N(2) and O(2) for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746952/ https://www.ncbi.nlm.nih.gov/pubmed/35010109 http://dx.doi.org/10.3390/nano12010159 |