Cargando…
Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting
Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of H(2)O from N(2) and O(2) for...
Autores principales: | Li, Lifeng, Shi, Zenan, Liang, Hong, Liu, Jie, Qiao, Zhiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746952/ https://www.ncbi.nlm.nih.gov/pubmed/35010109 http://dx.doi.org/10.3390/nano12010159 |
Ejemplares similares
-
Reversible Atmospheric Water Harvesting Using Metal-Organic Frameworks
por: Logan, Matthew W., et al.
Publicado: (2020) -
Computational Screening of Metal–Organic Framework Membranes for the Separation of 15 Gas Mixtures
por: Yang, Wenyuan, et al.
Publicado: (2019) -
Metal–Organic Frameworks for Water Harvesting
from Air, Anywhere, Anytime
por: Xu, Wentao, et al.
Publicado: (2020) -
Multiphoton harvesting metal–organic frameworks
por: Quah, Hong Sheng, et al.
Publicado: (2015) -
Postsynthetic Transformation
of Imine- into Nitrone-Linked
Covalent Organic Frameworks for Atmospheric Water Harvesting at Decreased
Humidity
por: Grunenberg, Lars, et al.
Publicado: (2023)