Cargando…
Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/ https://www.ncbi.nlm.nih.gov/pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 |