Cargando…
Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/ https://www.ncbi.nlm.nih.gov/pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 |
_version_ | 1784630866791628800 |
---|---|
author | Chi, Mingzhe Gargouri, Rihab Schrader, Tim Damak, Kamel Maâlej, Ramzi Sierka, Marek |
author_facet | Chi, Mingzhe Gargouri, Rihab Schrader, Tim Damak, Kamel Maâlej, Ramzi Sierka, Marek |
author_sort | Chi, Mingzhe |
collection | PubMed |
description | Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization [Formula: see text] of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting [Formula: see text] of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of [Formula: see text] of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database. |
format | Online Article Text |
id | pubmed-8747575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87475752022-01-11 Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers Chi, Mingzhe Gargouri, Rihab Schrader, Tim Damak, Kamel Maâlej, Ramzi Sierka, Marek Polymers (Basel) Article Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization [Formula: see text] of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting [Formula: see text] of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of [Formula: see text] of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database. MDPI 2021-12-22 /pmc/articles/PMC8747575/ /pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chi, Mingzhe Gargouri, Rihab Schrader, Tim Damak, Kamel Maâlej, Ramzi Sierka, Marek Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title | Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title_full | Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title_fullStr | Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title_full_unstemmed | Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title_short | Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers |
title_sort | atomistic descriptors for machine learning models of solubility parameters for small molecules and polymers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/ https://www.ncbi.nlm.nih.gov/pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 |
work_keys_str_mv | AT chimingzhe atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers AT gargouririhab atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers AT schradertim atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers AT damakkamel atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers AT maalejramzi atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers AT sierkamarek atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers |