Cargando…

Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers

Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Mingzhe, Gargouri, Rihab, Schrader, Tim, Damak, Kamel, Maâlej, Ramzi, Sierka, Marek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/
https://www.ncbi.nlm.nih.gov/pubmed/35012054
http://dx.doi.org/10.3390/polym14010026
_version_ 1784630866791628800
author Chi, Mingzhe
Gargouri, Rihab
Schrader, Tim
Damak, Kamel
Maâlej, Ramzi
Sierka, Marek
author_facet Chi, Mingzhe
Gargouri, Rihab
Schrader, Tim
Damak, Kamel
Maâlej, Ramzi
Sierka, Marek
author_sort Chi, Mingzhe
collection PubMed
description Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization [Formula: see text] of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting [Formula: see text] of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of [Formula: see text] of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.
format Online
Article
Text
id pubmed-8747575
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87475752022-01-11 Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers Chi, Mingzhe Gargouri, Rihab Schrader, Tim Damak, Kamel Maâlej, Ramzi Sierka, Marek Polymers (Basel) Article Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization [Formula: see text] of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting [Formula: see text] of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of [Formula: see text] of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database. MDPI 2021-12-22 /pmc/articles/PMC8747575/ /pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chi, Mingzhe
Gargouri, Rihab
Schrader, Tim
Damak, Kamel
Maâlej, Ramzi
Sierka, Marek
Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title_full Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title_fullStr Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title_full_unstemmed Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title_short Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
title_sort atomistic descriptors for machine learning models of solubility parameters for small molecules and polymers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/
https://www.ncbi.nlm.nih.gov/pubmed/35012054
http://dx.doi.org/10.3390/polym14010026
work_keys_str_mv AT chimingzhe atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers
AT gargouririhab atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers
AT schradertim atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers
AT damakkamel atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers
AT maalejramzi atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers
AT sierkamarek atomisticdescriptorsformachinelearningmodelsofsolubilityparametersforsmallmoleculesandpolymers