Cargando…
Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers
Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data a...
Autores principales: | Chi, Mingzhe, Gargouri, Rihab, Schrader, Tim, Damak, Kamel, Maâlej, Ramzi, Sierka, Marek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8747575/ https://www.ncbi.nlm.nih.gov/pubmed/35012054 http://dx.doi.org/10.3390/polym14010026 |
Ejemplares similares
-
Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd(2)O(3)
por: Zekri, Mohamed, et al.
Publicado: (2018) -
The Structure of Gd(3+)-Doped Li(2)O and K(2)O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations
por: Zekri, Mohamed, et al.
Publicado: (2021) -
Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition
por: Becker, Martin, et al.
Publicado: (2019) -
Challenges in the use of atomistic simulations to predict solubilities of drug-like molecules
por: Duarte Ramos Matos, Guilherme, et al.
Publicado: (2019) -
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023)