Cargando…
Benchmarking atlas-level data integration in single-cell genomics
Single-cell atlases often include samples that span locations, laboratories and conditions, leading to complex, nested batch effects in data. Thus, joint analysis of atlas datasets requires reliable data integration. To guide integration method choice, we benchmarked 68 method and preprocessing comb...
Autores principales: | Luecken, Malte D., Büttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M. F., Strobl, D. C., Zappia, L., Dugas, M., Colomé-Tatché, M., Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748196/ https://www.ncbi.nlm.nih.gov/pubmed/34949812 http://dx.doi.org/10.1038/s41592-021-01336-8 |
Ejemplares similares
-
EpiScanpy: integrated single-cell epigenomic analysis
por: Danese, Anna, et al.
Publicado: (2021) -
Mapping single-cell data to reference atlases by transfer learning
por: Lotfollahi, Mohammad, et al.
Publicado: (2021) -
Current best practices in single‐cell RNA‐seq analysis: a tutorial
por: Luecken, Malte D, et al.
Publicado: (2019) -
Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study
por: Hellenkamp, Björn, et al.
Publicado: (2018) -
The Cell Tracking Challenge: 10 years of objective benchmarking
por: Maška, Martin, et al.
Publicado: (2023)