Cargando…
Endothelial-derived extracellular microRNA-92a promotes arterial stiffness by regulating phenotype changes of vascular smooth muscle cells
Endothelial dysfunction and vascular smooth muscle cell (VSMC) plasticity are critically involved in the pathogenesis of hypertension and arterial stiffness. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and neighboring cells. Here, we investigated the rol...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748448/ https://www.ncbi.nlm.nih.gov/pubmed/35013491 http://dx.doi.org/10.1038/s41598-021-04341-1 |
Sumario: | Endothelial dysfunction and vascular smooth muscle cell (VSMC) plasticity are critically involved in the pathogenesis of hypertension and arterial stiffness. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and neighboring cells. Here, we investigated the role of endothelial-derived extracellular microRNA-92a (miR-92a) in promoting arterial stiffness by regulating EC–VSMC communication. Serum miR-92a level was higher in hypertensive patients than controls. Circulating miR-92a level was positively correlated with pulse wave velocity (PWV), systolic blood pressure (SBP), diastolic blood pressure (DBP), and serum endothelin-1 (ET-1) level, but inversely with serum nitric oxide (NO) level. In vitro, angiotensin II (Ang II)-increased miR-92a level in ECs mediated a contractile-to-synthetic phenotype change of co-cultured VSMCs. In Ang II-infused mice, locked nucleic acid-modified antisense miR-92a (LNA-miR-92a) ameliorated PWV, SBP, DBP, and impaired vasodilation induced by Ang II. LNA-miR-92a administration also reversed the increased levels of proliferative genes and decreased levels of contractile genes induced by Ang II in mouse aortas. Circulating serum miR-92a level and PWV were correlated in these mice. These findings indicate that EC miR-92a may be transported to VSMCs via extracellular vesicles to regulate phenotype changes of VSMCs, leading to arterial stiffness. |
---|