Cargando…
Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748638/ https://www.ncbi.nlm.nih.gov/pubmed/35013227 http://dx.doi.org/10.1038/s41467-021-27667-w |
_version_ | 1784631046290014208 |
---|---|
author | Lam, K. H. Brian Leon, Alberto J. Hui, Weili Lee, Sandy Che-Eun Batruch, Ihor Faust, Kevin Klekner, Almos Hutóczki, Gábor Koritzinsky, Marianne Richer, Maxime Djuric, Ugljesa Diamandis, Phedias |
author_facet | Lam, K. H. Brian Leon, Alberto J. Hui, Weili Lee, Sandy Che-Eun Batruch, Ihor Faust, Kevin Klekner, Almos Hutóczki, Gábor Koritzinsky, Marianne Richer, Maxime Djuric, Ugljesa Diamandis, Phedias |
author_sort | Lam, K. H. Brian |
collection | PubMed |
description | Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance. |
format | Online Article Text |
id | pubmed-8748638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87486382022-01-20 Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity Lam, K. H. Brian Leon, Alberto J. Hui, Weili Lee, Sandy Che-Eun Batruch, Ihor Faust, Kevin Klekner, Almos Hutóczki, Gábor Koritzinsky, Marianne Richer, Maxime Djuric, Ugljesa Diamandis, Phedias Nat Commun Article Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance. Nature Publishing Group UK 2022-01-10 /pmc/articles/PMC8748638/ /pubmed/35013227 http://dx.doi.org/10.1038/s41467-021-27667-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lam, K. H. Brian Leon, Alberto J. Hui, Weili Lee, Sandy Che-Eun Batruch, Ihor Faust, Kevin Klekner, Almos Hutóczki, Gábor Koritzinsky, Marianne Richer, Maxime Djuric, Ugljesa Diamandis, Phedias Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title_full | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title_fullStr | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title_full_unstemmed | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title_short | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
title_sort | topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748638/ https://www.ncbi.nlm.nih.gov/pubmed/35013227 http://dx.doi.org/10.1038/s41467-021-27667-w |
work_keys_str_mv | AT lamkhbrian topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT leonalbertoj topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT huiweili topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT leesandycheeun topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT batruchihor topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT faustkevin topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT klekneralmos topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT hutoczkigabor topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT koritzinskymarianne topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT richermaxime topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT djuricugljesa topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity AT diamandisphedias topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity |