Cargando…

Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity

Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, K. H. Brian, Leon, Alberto J., Hui, Weili, Lee, Sandy Che-Eun, Batruch, Ihor, Faust, Kevin, Klekner, Almos, Hutóczki, Gábor, Koritzinsky, Marianne, Richer, Maxime, Djuric, Ugljesa, Diamandis, Phedias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748638/
https://www.ncbi.nlm.nih.gov/pubmed/35013227
http://dx.doi.org/10.1038/s41467-021-27667-w
_version_ 1784631046290014208
author Lam, K. H. Brian
Leon, Alberto J.
Hui, Weili
Lee, Sandy Che-Eun
Batruch, Ihor
Faust, Kevin
Klekner, Almos
Hutóczki, Gábor
Koritzinsky, Marianne
Richer, Maxime
Djuric, Ugljesa
Diamandis, Phedias
author_facet Lam, K. H. Brian
Leon, Alberto J.
Hui, Weili
Lee, Sandy Che-Eun
Batruch, Ihor
Faust, Kevin
Klekner, Almos
Hutóczki, Gábor
Koritzinsky, Marianne
Richer, Maxime
Djuric, Ugljesa
Diamandis, Phedias
author_sort Lam, K. H. Brian
collection PubMed
description Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance.
format Online
Article
Text
id pubmed-8748638
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87486382022-01-20 Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity Lam, K. H. Brian Leon, Alberto J. Hui, Weili Lee, Sandy Che-Eun Batruch, Ihor Faust, Kevin Klekner, Almos Hutóczki, Gábor Koritzinsky, Marianne Richer, Maxime Djuric, Ugljesa Diamandis, Phedias Nat Commun Article Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma’s hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance. Nature Publishing Group UK 2022-01-10 /pmc/articles/PMC8748638/ /pubmed/35013227 http://dx.doi.org/10.1038/s41467-021-27667-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lam, K. H. Brian
Leon, Alberto J.
Hui, Weili
Lee, Sandy Che-Eun
Batruch, Ihor
Faust, Kevin
Klekner, Almos
Hutóczki, Gábor
Koritzinsky, Marianne
Richer, Maxime
Djuric, Ugljesa
Diamandis, Phedias
Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title_full Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title_fullStr Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title_full_unstemmed Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title_short Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
title_sort topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8748638/
https://www.ncbi.nlm.nih.gov/pubmed/35013227
http://dx.doi.org/10.1038/s41467-021-27667-w
work_keys_str_mv AT lamkhbrian topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT leonalbertoj topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT huiweili topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT leesandycheeun topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT batruchihor topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT faustkevin topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT klekneralmos topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT hutoczkigabor topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT koritzinskymarianne topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT richermaxime topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT djuricugljesa topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity
AT diamandisphedias topographicmappingoftheglioblastomaproteomerevealsatripleaxismodelofintratumoralheterogeneity