Cargando…
A stochastic Bayesian bootstrapping model for COVID-19 data
We provide a stochastic modeling framework for the incidence of COVID-19 in Castilla-Leon (Spain) for the period March 1, 2020 to February 12, 2021, which encompasses four waves. Each wave is appropriately described by a generalized logistic growth curve. Accordingly, the four waves are modeled thro...
Autores principales: | Calatayud, Julia, Jornet, Marc, Mateu, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749118/ https://www.ncbi.nlm.nih.gov/pubmed/35035283 http://dx.doi.org/10.1007/s00477-022-02170-w |
Ejemplares similares
-
Modeling noisy time-series data of crime with stochastic differential equations
por: Calatayud, Julia, et al.
Publicado: (2022) -
Spatio-temporal stochastic differential equations for crime incidence modeling
por: Calatayud, Julia, et al.
Publicado: (2023) -
A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases
por: Niraula, Poshan, et al.
Publicado: (2022) -
Contextual contact tracing based on stochastic compartment modeling and spatial risk assessment
por: Mahmood, Mateen, et al.
Publicado: (2021) -
A stochastic SEIHR model for COVID-19 data fluctuations
por: Niu, Ruiwu, et al.
Publicado: (2021)