Cargando…

An IDO1-related immune gene signature predicts overall survival in acute myeloid leukemia

The contribution of the bone marrow (BM) immune microenvironment to acute myeloid leukemia (AML) development is well-known, but its prognostic significance is still elusive. Indoleamine 2,3-dioxygenase 1 (IDO1), which is negatively regulated by the BIN1 proto-oncogene, is an interferon-γ-inducible m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ragaini, Simone, Wagner, Sarah, Marconi, Giovanni, Parisi, Sarah, Sartor, Chiara, Nanni, Jacopo, Cristiano, Gianluca, Talami, Annalisa, Olivi, Matteo, Ocadlikova, Darina, Ciciarello, Marilena, Corradi, Giulia, Ottaviani, Emanuela, Papayannidis, Cristina, Paolini, Stefania, Vadakekolathu, Jayakumar, Cavo, Michele, Rutella, Sergio, Curti, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753212/
https://www.ncbi.nlm.nih.gov/pubmed/34535017
http://dx.doi.org/10.1182/bloodadvances.2021004878
Descripción
Sumario:The contribution of the bone marrow (BM) immune microenvironment to acute myeloid leukemia (AML) development is well-known, but its prognostic significance is still elusive. Indoleamine 2,3-dioxygenase 1 (IDO1), which is negatively regulated by the BIN1 proto-oncogene, is an interferon-γ-inducible mediator of immune tolerance. With the aim to develop a prognostic IDO1-based immune gene signature, biological and clinical data of 982 patients with newly diagnosed, nonpromyelocytic AML were retrieved from public datasets and analyzed using established computational pipelines. Targeted transcriptomic profiles of 24 diagnostic BM samples were analyzed using the NanoString’s nCounter platform. BIN1 and IDO1 were inversely correlated and individually predicted overall survival. PLXNC1, a semaphorin receptor involved in inflammation and immune response, was the IDO1-interacting gene retaining the strongest prognostic value. The incorporation of PLXNC1 into the 2-gene IDO1-BIN1 score gave rise to a powerful immune gene signature predicting survival, especially in patients receiving chemotherapy. The top differentially expressed genes between IDO1(low) and IDO-1(high) and between PLXNC1(low) and PLXNC1(high) cases further improved the prognostic value of IDO1 providing a 7- and 10-gene immune signature, highly predictive of survival and correlating with AML mutational status at diagnosis. Taken together, our data indicate that IDO1 is pivotal for the construction of an immune gene signature predictive of survival in AML patients. Given the emerging role of immunotherapies for AML, our findings support the incorporation of immune biomarkers into current AML classification and prognostication algorithms.