Cargando…

Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains

[Image: see text] We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF(2)(3,5-lut)(4)·2H(2)O and NiX(2)(3,5-lut)(4), where X = HF(2), Cl, Br, or I (lut = lutidine C(7)H(9)N). Upon creation of isolated Ni–X···X–Ni and Ni–F–H–F···F–H–F–Ni chains separated by bulky an...

Descripción completa

Detalles Bibliográficos
Autores principales: Blackmore, William J. A., Curley, Samuel P. M., Williams, Robert C., Vaidya, Shroya, Singleton, John, Birnbaum, Serena, Ozarowski, Andrew, Schlueter, John A., Chen, Yu-Sheng, Gillon, Beatrice, Goukassov, Arsen, Kibalin, Iurii, Villa, Danielle Y., Villa, Jacqueline A., Manson, Jamie L., Goddard, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753652/
https://www.ncbi.nlm.nih.gov/pubmed/34939800
http://dx.doi.org/10.1021/acs.inorgchem.1c02483
_version_ 1784632136875114496
author Blackmore, William J. A.
Curley, Samuel P. M.
Williams, Robert C.
Vaidya, Shroya
Singleton, John
Birnbaum, Serena
Ozarowski, Andrew
Schlueter, John A.
Chen, Yu-Sheng
Gillon, Beatrice
Goukassov, Arsen
Kibalin, Iurii
Villa, Danielle Y.
Villa, Jacqueline A.
Manson, Jamie L.
Goddard, Paul A.
author_facet Blackmore, William J. A.
Curley, Samuel P. M.
Williams, Robert C.
Vaidya, Shroya
Singleton, John
Birnbaum, Serena
Ozarowski, Andrew
Schlueter, John A.
Chen, Yu-Sheng
Gillon, Beatrice
Goukassov, Arsen
Kibalin, Iurii
Villa, Danielle Y.
Villa, Jacqueline A.
Manson, Jamie L.
Goddard, Paul A.
author_sort Blackmore, William J. A.
collection PubMed
description [Image: see text] We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF(2)(3,5-lut)(4)·2H(2)O and NiX(2)(3,5-lut)(4), where X = HF(2), Cl, Br, or I (lut = lutidine C(7)H(9)N). Upon creation of isolated Ni–X···X–Ni and Ni–F–H–F···F–H–F–Ni chains separated by bulky and nonbridging lutidine ligands, the effect that halogen substitution has on the magnetic properties of transition-metal-ion complexes can be investigated directly and in isolation from competing processes such as Jahn–Teller distortions. We find that substitution of the larger halide ions turns on increasingly strong antiferromagnetic interactions between adjacent Ni(2+) ions via a novel through-space two-halide exchange. In this process, the X···X bond lengths in the Br and I materials are more than double the van der Waals radius of X yet can still mediate significant magnetic interactions. We also find that a simple model based on elongation/compression of the Ni(2+) octahedra cannot explain the observed single-ion anisotropy in mixed-ligand compounds. We offer an alternative that takes into account the difference in the electronegativity of axial and equatorial ligands.
format Online
Article
Text
id pubmed-8753652
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87536522022-01-12 Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains Blackmore, William J. A. Curley, Samuel P. M. Williams, Robert C. Vaidya, Shroya Singleton, John Birnbaum, Serena Ozarowski, Andrew Schlueter, John A. Chen, Yu-Sheng Gillon, Beatrice Goukassov, Arsen Kibalin, Iurii Villa, Danielle Y. Villa, Jacqueline A. Manson, Jamie L. Goddard, Paul A. Inorg Chem [Image: see text] We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF(2)(3,5-lut)(4)·2H(2)O and NiX(2)(3,5-lut)(4), where X = HF(2), Cl, Br, or I (lut = lutidine C(7)H(9)N). Upon creation of isolated Ni–X···X–Ni and Ni–F–H–F···F–H–F–Ni chains separated by bulky and nonbridging lutidine ligands, the effect that halogen substitution has on the magnetic properties of transition-metal-ion complexes can be investigated directly and in isolation from competing processes such as Jahn–Teller distortions. We find that substitution of the larger halide ions turns on increasingly strong antiferromagnetic interactions between adjacent Ni(2+) ions via a novel through-space two-halide exchange. In this process, the X···X bond lengths in the Br and I materials are more than double the van der Waals radius of X yet can still mediate significant magnetic interactions. We also find that a simple model based on elongation/compression of the Ni(2+) octahedra cannot explain the observed single-ion anisotropy in mixed-ligand compounds. We offer an alternative that takes into account the difference in the electronegativity of axial and equatorial ligands. American Chemical Society 2021-12-23 2022-01-10 /pmc/articles/PMC8753652/ /pubmed/34939800 http://dx.doi.org/10.1021/acs.inorgchem.1c02483 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Blackmore, William J. A.
Curley, Samuel P. M.
Williams, Robert C.
Vaidya, Shroya
Singleton, John
Birnbaum, Serena
Ozarowski, Andrew
Schlueter, John A.
Chen, Yu-Sheng
Gillon, Beatrice
Goukassov, Arsen
Kibalin, Iurii
Villa, Danielle Y.
Villa, Jacqueline A.
Manson, Jamie L.
Goddard, Paul A.
Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title_full Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title_fullStr Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title_full_unstemmed Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title_short Magneto-structural Correlations in Ni(2+)–Halide···Halide–Ni(2+) Chains
title_sort magneto-structural correlations in ni(2+)–halide···halide–ni(2+) chains
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753652/
https://www.ncbi.nlm.nih.gov/pubmed/34939800
http://dx.doi.org/10.1021/acs.inorgchem.1c02483
work_keys_str_mv AT blackmorewilliamja magnetostructuralcorrelationsinni2halidehalideni2chains
AT curleysamuelpm magnetostructuralcorrelationsinni2halidehalideni2chains
AT williamsrobertc magnetostructuralcorrelationsinni2halidehalideni2chains
AT vaidyashroya magnetostructuralcorrelationsinni2halidehalideni2chains
AT singletonjohn magnetostructuralcorrelationsinni2halidehalideni2chains
AT birnbaumserena magnetostructuralcorrelationsinni2halidehalideni2chains
AT ozarowskiandrew magnetostructuralcorrelationsinni2halidehalideni2chains
AT schlueterjohna magnetostructuralcorrelationsinni2halidehalideni2chains
AT chenyusheng magnetostructuralcorrelationsinni2halidehalideni2chains
AT gillonbeatrice magnetostructuralcorrelationsinni2halidehalideni2chains
AT goukassovarsen magnetostructuralcorrelationsinni2halidehalideni2chains
AT kibaliniurii magnetostructuralcorrelationsinni2halidehalideni2chains
AT villadanielley magnetostructuralcorrelationsinni2halidehalideni2chains
AT villajacquelinea magnetostructuralcorrelationsinni2halidehalideni2chains
AT mansonjamiel magnetostructuralcorrelationsinni2halidehalideni2chains
AT goddardpaula magnetostructuralcorrelationsinni2halidehalideni2chains