Cargando…
Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n
Cells increase their DNA content greater than the G2/M (DNA > 4n) phases along the path to cancer. The signals that support this increase in DNA content remain poorly understood. Cells infected with adenovirus (Ad) similarly develop DNA > 4n and share a need to bypass the DNA damage response (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754114/ https://www.ncbi.nlm.nih.gov/pubmed/35019694 http://dx.doi.org/10.1128/spectrum.01881-21 |
_version_ | 1784632205636534272 |
---|---|
author | Almuzaini, Nujud Moore, Madison Robert-Guroff, Marjorie Thomas, Michael A. |
author_facet | Almuzaini, Nujud Moore, Madison Robert-Guroff, Marjorie Thomas, Michael A. |
author_sort | Almuzaini, Nujud |
collection | PubMed |
description | Cells increase their DNA content greater than the G2/M (DNA > 4n) phases along the path to cancer. The signals that support this increase in DNA content remain poorly understood. Cells infected with adenovirus (Ad) similarly develop DNA > 4n and share a need to bypass the DNA damage response (DDR) signals that trigger cell cycle arrest, and/or cell death. Ads with deletion in early region 1B55K (ΔE1B Ad) are oncolytic agents that are currently being explored for use in vaccine delivery. Interestingly, they promote higher levels of DNA > 4n than Ads that contain E1B55K. Existing in these and almost all Ads that are being explored for clinical use, is early region 4 (E4). The Ad E4 open reading frame 3 (E4orf3) is a viral oncogene that interferes with the ability of cells to respond to DNA damage by disrupting MRN complex formation. Our study reveals that E4orf3 is required for the enhanced fraction of ΔE1B Ad-infected cells with DNA > 4n. For that reason, we explored signaling events mediated by E4orf3. We found that in ΔE1B Ad-infected cells, E4orf3, as reported by others, isolates NBS1 in nuclear dots and tracks. This allows for elevated levels of phosphorylated ATM that is linked to transcriptionally active NF-κB. Pharmacological inhibition of NF-κB reduced the fraction of ΔE1B Ad-infected cells with DNA > 4n while pharmacological inhibition of ATM reduced the levels of nuclear NF-κB and the fraction of ΔE1B Ad-infected cells with DNA > 4n and increased the fraction of dead or dying cells with fragmented DNA. This ability of E4orf3 to disrupt MRN complex formation that allows cells to bypass the cell cycle, evade death, and accumulate DNA > 4n, may be linked to its oncogenic potential. IMPORTANCE Genome instability, a hallmark of cancer, exists as part of a cycle that leads to DNA damage and DNA > 4n that further enhances genome instability. Ad E4orf3 is a viral oncogene. Here, we describe E4orf3 mediated signaling events that support DNA > 4n in ΔE1B Ad-infected cells. These signaling events may be linked to the oncogenic potential of E4orf3 and may provide a basis for how some cells survive with DNA > 4n. |
format | Online Article Text |
id | pubmed-8754114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-87541142022-01-24 Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n Almuzaini, Nujud Moore, Madison Robert-Guroff, Marjorie Thomas, Michael A. Microbiol Spectr Research Article Cells increase their DNA content greater than the G2/M (DNA > 4n) phases along the path to cancer. The signals that support this increase in DNA content remain poorly understood. Cells infected with adenovirus (Ad) similarly develop DNA > 4n and share a need to bypass the DNA damage response (DDR) signals that trigger cell cycle arrest, and/or cell death. Ads with deletion in early region 1B55K (ΔE1B Ad) are oncolytic agents that are currently being explored for use in vaccine delivery. Interestingly, they promote higher levels of DNA > 4n than Ads that contain E1B55K. Existing in these and almost all Ads that are being explored for clinical use, is early region 4 (E4). The Ad E4 open reading frame 3 (E4orf3) is a viral oncogene that interferes with the ability of cells to respond to DNA damage by disrupting MRN complex formation. Our study reveals that E4orf3 is required for the enhanced fraction of ΔE1B Ad-infected cells with DNA > 4n. For that reason, we explored signaling events mediated by E4orf3. We found that in ΔE1B Ad-infected cells, E4orf3, as reported by others, isolates NBS1 in nuclear dots and tracks. This allows for elevated levels of phosphorylated ATM that is linked to transcriptionally active NF-κB. Pharmacological inhibition of NF-κB reduced the fraction of ΔE1B Ad-infected cells with DNA > 4n while pharmacological inhibition of ATM reduced the levels of nuclear NF-κB and the fraction of ΔE1B Ad-infected cells with DNA > 4n and increased the fraction of dead or dying cells with fragmented DNA. This ability of E4orf3 to disrupt MRN complex formation that allows cells to bypass the cell cycle, evade death, and accumulate DNA > 4n, may be linked to its oncogenic potential. IMPORTANCE Genome instability, a hallmark of cancer, exists as part of a cycle that leads to DNA damage and DNA > 4n that further enhances genome instability. Ad E4orf3 is a viral oncogene. Here, we describe E4orf3 mediated signaling events that support DNA > 4n in ΔE1B Ad-infected cells. These signaling events may be linked to the oncogenic potential of E4orf3 and may provide a basis for how some cells survive with DNA > 4n. American Society for Microbiology 2022-01-12 /pmc/articles/PMC8754114/ /pubmed/35019694 http://dx.doi.org/10.1128/spectrum.01881-21 Text en Copyright © 2022 Almuzaini et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Almuzaini, Nujud Moore, Madison Robert-Guroff, Marjorie Thomas, Michael A. Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title | Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title_full | Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title_fullStr | Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title_full_unstemmed | Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title_short | Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n |
title_sort | disruption of nbs1/mrn complex formation by e4orf3 supports nf-κb that licenses e1b55k-deleted adenovirus-infected cells to accumulate dna>4n |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754114/ https://www.ncbi.nlm.nih.gov/pubmed/35019694 http://dx.doi.org/10.1128/spectrum.01881-21 |
work_keys_str_mv | AT almuzaininujud disruptionofnbs1mrncomplexformationbye4orf3supportsnfkbthatlicensese1b55kdeletedadenovirusinfectedcellstoaccumulatedna4n AT mooremadison disruptionofnbs1mrncomplexformationbye4orf3supportsnfkbthatlicensese1b55kdeletedadenovirusinfectedcellstoaccumulatedna4n AT robertguroffmarjorie disruptionofnbs1mrncomplexformationbye4orf3supportsnfkbthatlicensese1b55kdeletedadenovirusinfectedcellstoaccumulatedna4n AT thomasmichaela disruptionofnbs1mrncomplexformationbye4orf3supportsnfkbthatlicensese1b55kdeletedadenovirusinfectedcellstoaccumulatedna4n |