Cargando…
Mapping Oxidation and Wafer Cleaning to Device Characteristics Using Physics-Assisted Machine Learning
[Image: see text] It is always highly desired to have a well-defined relationship between the chemistry in semiconductor processing and the device characteristics. With the shrinkage of technology nodes in the semiconductors roadmap, it becomes more complicated to understand the relation between the...
Autores principales: | Pratik, Sparsh, Liu, Po-Ning, Ota, Jun, Tu, Yen-Liang, Lai, Guan-Wen, Ho, Ya-Wen, Yang, Zheng-Kai, Rawat, Tejender Singh, Lin, Albert S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8756782/ https://www.ncbi.nlm.nih.gov/pubmed/35036757 http://dx.doi.org/10.1021/acsomega.1c05552 |
Ejemplares similares
-
Handbook of silicon wafer cleaning technology
por: Reinhardt, Karen, et al.
Publicado: (2018) -
Analytics-statistics mixed training and its fitness to semisupervised manufacturing
por: Parashar, Parag, et al.
Publicado: (2019) -
Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices
por: Tian, He, et al.
Publicado: (2014) -
Meta-Learned and
TCAD-Assisted Sampling in Semiconductor
Laser Annealing
por: Rawat, Tejender Singh, et al.
Publicado: (2022) -
Surface Modification Using Assisting Electrodes in Wire Electrical Discharge Machining for Silicon Wafer Preparation
por: Kuo, Chunliang, et al.
Publicado: (2021)