Cargando…
Deep learning enables genetic analysis of the human thoracic aorta
Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genom...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758523/ https://www.ncbi.nlm.nih.gov/pubmed/34837083 http://dx.doi.org/10.1038/s41588-021-00962-4 |
_version_ | 1784632918884220928 |
---|---|
author | Pirruccello, James P. Chaffin, Mark D. Chou, Elizabeth L. Fleming, Stephen J. Lin, Honghuang Nekoui, Mahan Khurshid, Shaan Friedman, Samuel N. Bick, Alexander G. Arduini, Alessandro Weng, Lu-Chen Choi, Seung Hoan Akkad, Amer-Denis Batra, Puneet Tucker, Nathan R. Hall, Amelia W. Roselli, Carolina Benjamin, Emelia J. Vellarikkal, Shamsudheen K. Gupta, Rajat M. Stegmann, Christian M. Juric, Dejan Stone, James R. Vasan, Ramachandran S. Ho, Jennifer E. Hoffmann, Udo Lubitz, Steven A. Philippakis, Anthony A. Lindsay, Mark E. Ellinor, Patrick T. |
author_facet | Pirruccello, James P. Chaffin, Mark D. Chou, Elizabeth L. Fleming, Stephen J. Lin, Honghuang Nekoui, Mahan Khurshid, Shaan Friedman, Samuel N. Bick, Alexander G. Arduini, Alessandro Weng, Lu-Chen Choi, Seung Hoan Akkad, Amer-Denis Batra, Puneet Tucker, Nathan R. Hall, Amelia W. Roselli, Carolina Benjamin, Emelia J. Vellarikkal, Shamsudheen K. Gupta, Rajat M. Stegmann, Christian M. Juric, Dejan Stone, James R. Vasan, Ramachandran S. Ho, Jennifer E. Hoffmann, Udo Lubitz, Steven A. Philippakis, Anthony A. Lindsay, Mark E. Ellinor, Patrick T. |
author_sort | Pirruccello, James P. |
collection | PubMed |
description | Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests, and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (HR = 1.43 per s.d.; CI 1.32-1.54; P = 3.3 × 10(−20)). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images. |
format | Online Article Text |
id | pubmed-8758523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-87585232022-05-26 Deep learning enables genetic analysis of the human thoracic aorta Pirruccello, James P. Chaffin, Mark D. Chou, Elizabeth L. Fleming, Stephen J. Lin, Honghuang Nekoui, Mahan Khurshid, Shaan Friedman, Samuel N. Bick, Alexander G. Arduini, Alessandro Weng, Lu-Chen Choi, Seung Hoan Akkad, Amer-Denis Batra, Puneet Tucker, Nathan R. Hall, Amelia W. Roselli, Carolina Benjamin, Emelia J. Vellarikkal, Shamsudheen K. Gupta, Rajat M. Stegmann, Christian M. Juric, Dejan Stone, James R. Vasan, Ramachandran S. Ho, Jennifer E. Hoffmann, Udo Lubitz, Steven A. Philippakis, Anthony A. Lindsay, Mark E. Ellinor, Patrick T. Nat Genet Article Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests, and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (HR = 1.43 per s.d.; CI 1.32-1.54; P = 3.3 × 10(−20)). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images. 2022-01 2021-11-26 /pmc/articles/PMC8758523/ /pubmed/34837083 http://dx.doi.org/10.1038/s41588-021-00962-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Pirruccello, James P. Chaffin, Mark D. Chou, Elizabeth L. Fleming, Stephen J. Lin, Honghuang Nekoui, Mahan Khurshid, Shaan Friedman, Samuel N. Bick, Alexander G. Arduini, Alessandro Weng, Lu-Chen Choi, Seung Hoan Akkad, Amer-Denis Batra, Puneet Tucker, Nathan R. Hall, Amelia W. Roselli, Carolina Benjamin, Emelia J. Vellarikkal, Shamsudheen K. Gupta, Rajat M. Stegmann, Christian M. Juric, Dejan Stone, James R. Vasan, Ramachandran S. Ho, Jennifer E. Hoffmann, Udo Lubitz, Steven A. Philippakis, Anthony A. Lindsay, Mark E. Ellinor, Patrick T. Deep learning enables genetic analysis of the human thoracic aorta |
title | Deep learning enables genetic analysis of the human thoracic aorta |
title_full | Deep learning enables genetic analysis of the human thoracic aorta |
title_fullStr | Deep learning enables genetic analysis of the human thoracic aorta |
title_full_unstemmed | Deep learning enables genetic analysis of the human thoracic aorta |
title_short | Deep learning enables genetic analysis of the human thoracic aorta |
title_sort | deep learning enables genetic analysis of the human thoracic aorta |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8758523/ https://www.ncbi.nlm.nih.gov/pubmed/34837083 http://dx.doi.org/10.1038/s41588-021-00962-4 |
work_keys_str_mv | AT pirruccellojamesp deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT chaffinmarkd deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT chouelizabethl deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT flemingstephenj deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT linhonghuang deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT nekouimahan deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT khurshidshaan deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT friedmansamueln deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT bickalexanderg deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT arduinialessandro deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT wengluchen deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT choiseunghoan deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT akkadamerdenis deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT batrapuneet deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT tuckernathanr deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT hallameliaw deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT rosellicarolina deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT benjaminemeliaj deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT vellarikkalshamsudheenk deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT guptarajatm deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT stegmannchristianm deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT juricdejan deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT stonejamesr deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT vasanramachandrans deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT hojennifere deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT hoffmannudo deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT lubitzstevena deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT philippakisanthonya deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT lindsaymarke deeplearningenablesgeneticanalysisofthehumanthoracicaorta AT ellinorpatrickt deeplearningenablesgeneticanalysisofthehumanthoracicaorta |