Cargando…
Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China
OBJECTIVES: This study intends to build and compare two kinds of forecasting models at different time scales for hemorrhagic fever incidence in China. METHODS: Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) were adopted to fit monthly, weekly and da...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759700/ https://www.ncbi.nlm.nih.gov/pubmed/35030203 http://dx.doi.org/10.1371/journal.pone.0262009 |