Cargando…
Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China
OBJECTIVES: This study intends to build and compare two kinds of forecasting models at different time scales for hemorrhagic fever incidence in China. METHODS: Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) were adopted to fit monthly, weekly and da...
Autores principales: | Zhang, Rui, Song, Hejia, Chen, Qiulan, Wang, Yu, Wang, Songwang, Li, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759700/ https://www.ncbi.nlm.nih.gov/pubmed/35030203 http://dx.doi.org/10.1371/journal.pone.0262009 |
Ejemplares similares
-
Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China
por: Zhang, Rui, et al.
Publicado: (2021) -
The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China
por: Zhao, Daren, et al.
Publicado: (2022) -
Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China
por: Lou, He-Ren, et al.
Publicado: (2022) -
Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model
por: Liu, Qiyong, et al.
Publicado: (2011) -
Using LSTM and ARIMA to Simulate and Predict Limestone Price Variations
por: Mbah, Tawum Juvert, et al.
Publicado: (2021)