Cargando…
Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
[Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762662/ https://www.ncbi.nlm.nih.gov/pubmed/34985858 http://dx.doi.org/10.1021/acsinfecdis.1c00550 |
_version_ | 1784633809966202880 |
---|---|
author | Siddiqui, Ghizal Giannangelo, Carlo De Paoli, Amanda Schuh, Anna Katharina Heimsch, Kim C. Anderson, Dovile Brown, Timothy G. MacRaild, Christopher A. Wu, Jianbo Wang, Xiaofang Dong, Yuxiang Vennerstrom, Jonathan L. Becker, Katja Creek, Darren J. |
author_facet | Siddiqui, Ghizal Giannangelo, Carlo De Paoli, Amanda Schuh, Anna Katharina Heimsch, Kim C. Anderson, Dovile Brown, Timothy G. MacRaild, Christopher A. Wu, Jianbo Wang, Xiaofang Dong, Yuxiang Vennerstrom, Jonathan L. Becker, Katja Creek, Darren J. |
author_sort | Siddiqui, Ghizal |
collection | PubMed |
description | [Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials. |
format | Online Article Text |
id | pubmed-8762662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87626622022-01-18 Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells Siddiqui, Ghizal Giannangelo, Carlo De Paoli, Amanda Schuh, Anna Katharina Heimsch, Kim C. Anderson, Dovile Brown, Timothy G. MacRaild, Christopher A. Wu, Jianbo Wang, Xiaofang Dong, Yuxiang Vennerstrom, Jonathan L. Becker, Katja Creek, Darren J. ACS Infect Dis [Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials. American Chemical Society 2022-01-05 2022-01-14 /pmc/articles/PMC8762662/ /pubmed/34985858 http://dx.doi.org/10.1021/acsinfecdis.1c00550 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Siddiqui, Ghizal Giannangelo, Carlo De Paoli, Amanda Schuh, Anna Katharina Heimsch, Kim C. Anderson, Dovile Brown, Timothy G. MacRaild, Christopher A. Wu, Jianbo Wang, Xiaofang Dong, Yuxiang Vennerstrom, Jonathan L. Becker, Katja Creek, Darren J. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells |
title | Peroxide Antimalarial Drugs Target Redox Homeostasis
in Plasmodium falciparum Infected Red
Blood Cells |
title_full | Peroxide Antimalarial Drugs Target Redox Homeostasis
in Plasmodium falciparum Infected Red
Blood Cells |
title_fullStr | Peroxide Antimalarial Drugs Target Redox Homeostasis
in Plasmodium falciparum Infected Red
Blood Cells |
title_full_unstemmed | Peroxide Antimalarial Drugs Target Redox Homeostasis
in Plasmodium falciparum Infected Red
Blood Cells |
title_short | Peroxide Antimalarial Drugs Target Redox Homeostasis
in Plasmodium falciparum Infected Red
Blood Cells |
title_sort | peroxide antimalarial drugs target redox homeostasis
in plasmodium falciparum infected red
blood cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762662/ https://www.ncbi.nlm.nih.gov/pubmed/34985858 http://dx.doi.org/10.1021/acsinfecdis.1c00550 |
work_keys_str_mv | AT siddiquighizal peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT giannangelocarlo peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT depaoliamanda peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT schuhannakatharina peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT heimschkimc peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT andersondovile peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT browntimothyg peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT macraildchristophera peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT wujianbo peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT wangxiaofang peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT dongyuxiang peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT vennerstromjonathanl peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT beckerkatja peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells AT creekdarrenj peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells |