Cargando…

Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells

[Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development...

Descripción completa

Detalles Bibliográficos
Autores principales: Siddiqui, Ghizal, Giannangelo, Carlo, De Paoli, Amanda, Schuh, Anna Katharina, Heimsch, Kim C., Anderson, Dovile, Brown, Timothy G., MacRaild, Christopher A., Wu, Jianbo, Wang, Xiaofang, Dong, Yuxiang, Vennerstrom, Jonathan L., Becker, Katja, Creek, Darren J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762662/
https://www.ncbi.nlm.nih.gov/pubmed/34985858
http://dx.doi.org/10.1021/acsinfecdis.1c00550
_version_ 1784633809966202880
author Siddiqui, Ghizal
Giannangelo, Carlo
De Paoli, Amanda
Schuh, Anna Katharina
Heimsch, Kim C.
Anderson, Dovile
Brown, Timothy G.
MacRaild, Christopher A.
Wu, Jianbo
Wang, Xiaofang
Dong, Yuxiang
Vennerstrom, Jonathan L.
Becker, Katja
Creek, Darren J.
author_facet Siddiqui, Ghizal
Giannangelo, Carlo
De Paoli, Amanda
Schuh, Anna Katharina
Heimsch, Kim C.
Anderson, Dovile
Brown, Timothy G.
MacRaild, Christopher A.
Wu, Jianbo
Wang, Xiaofang
Dong, Yuxiang
Vennerstrom, Jonathan L.
Becker, Katja
Creek, Darren J.
author_sort Siddiqui, Ghizal
collection PubMed
description [Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials.
format Online
Article
Text
id pubmed-8762662
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-87626622022-01-18 Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells Siddiqui, Ghizal Giannangelo, Carlo De Paoli, Amanda Schuh, Anna Katharina Heimsch, Kim C. Anderson, Dovile Brown, Timothy G. MacRaild, Christopher A. Wu, Jianbo Wang, Xiaofang Dong, Yuxiang Vennerstrom, Jonathan L. Becker, Katja Creek, Darren J. ACS Infect Dis [Image: see text] Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials. American Chemical Society 2022-01-05 2022-01-14 /pmc/articles/PMC8762662/ /pubmed/34985858 http://dx.doi.org/10.1021/acsinfecdis.1c00550 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Siddiqui, Ghizal
Giannangelo, Carlo
De Paoli, Amanda
Schuh, Anna Katharina
Heimsch, Kim C.
Anderson, Dovile
Brown, Timothy G.
MacRaild, Christopher A.
Wu, Jianbo
Wang, Xiaofang
Dong, Yuxiang
Vennerstrom, Jonathan L.
Becker, Katja
Creek, Darren J.
Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title_full Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title_fullStr Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title_full_unstemmed Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title_short Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells
title_sort peroxide antimalarial drugs target redox homeostasis in plasmodium falciparum infected red blood cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762662/
https://www.ncbi.nlm.nih.gov/pubmed/34985858
http://dx.doi.org/10.1021/acsinfecdis.1c00550
work_keys_str_mv AT siddiquighizal peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT giannangelocarlo peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT depaoliamanda peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT schuhannakatharina peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT heimschkimc peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT andersondovile peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT browntimothyg peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT macraildchristophera peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT wujianbo peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT wangxiaofang peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT dongyuxiang peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT vennerstromjonathanl peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT beckerkatja peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells
AT creekdarrenj peroxideantimalarialdrugstargetredoxhomeostasisinplasmodiumfalciparuminfectedredbloodcells