Cargando…
AI Pontryagin or how artificial neural networks learn to control dynamical systems
The efficient control of complex dynamical systems has many applications in the natural and applied sciences. In most real-world control problems, both control energy and cost constraints play a significant role. Although such optimal control problems can be formulated within the framework of variat...
Autores principales: | Böttcher, Lucas, Antulov-Fantulin, Nino, Asikis, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763915/ https://www.ncbi.nlm.nih.gov/pubmed/35039488 http://dx.doi.org/10.1038/s41467-021-27590-0 |
Ejemplares similares
-
On the accuracy of short-term COVID-19 fatality forecasts
por: Antulov-Fantulin, Nino, et al.
Publicado: (2022) -
Pontryagin Conference
por: Collective
Publicado: (1998) -
Simulating SIR processes on networks using weighted shortest paths
por: Tolić, Dijana, et al.
Publicado: (2018) -
Generalized network dismantling
por: Ren, Xiao-Long, et al.
Publicado: (2019) -
On some fundamental challenges in monitoring epidemics
por: Vasiliauskaite, Vaiva, et al.
Publicado: (2022)