Cargando…
Microbiome differential abundance methods produce different results across 38 datasets
Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple methods are used interchangeably for this purpose in the literature. Yet, there are few large-scale studies systematically exploring the appropriateness of using these tools interchangeably, and the scale a...
Autores principales: | Nearing, Jacob T., Douglas, Gavin M., Hayes, Molly G., MacDonald, Jocelyn, Desai, Dhwani K., Allward, Nicole, Jones, Casey M. A., Wright, Robyn J., Dhanani, Akhilesh S., Comeau, André M., Langille, Morgan G. I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763921/ https://www.ncbi.nlm.nih.gov/pubmed/35039521 http://dx.doi.org/10.1038/s41467-022-28034-z |
Ejemplares similares
-
Author Correction: Microbiome differential abundance methods produce different results across 38 datasets
por: Nearing, Jacob T., et al.
Publicado: (2022) -
Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches
por: Nearing, Jacob T., et al.
Publicado: (2018) -
Identifying biases and their potential solutions in human microbiome studies
por: Nearing, Jacob T., et al.
Publicado: (2021) -
Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research
por: Comeau, André M., et al.
Publicado: (2017) -
Integrating phylogenetic and functional data in microbiome studies
por: Douglas, Gavin M, et al.
Publicado: (2022)