Cargando…

Adversarially Robust Learning via Entropic Regularization

In this paper we propose a new family of algorithms, ATENT, for training adversarially robust deep neural networks. We formulate a new loss function that is equipped with an additional entropic regularization. Our loss function considers the contribution of adversarial samples that are drawn from a...

Descripción completa

Detalles Bibliográficos
Autores principales: Jagatap, Gauri, Joshi, Ameya, Chowdhury, Animesh Basak, Garg, Siddharth, Hegde, Chinmay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764444/
https://www.ncbi.nlm.nih.gov/pubmed/35059637
http://dx.doi.org/10.3389/frai.2021.780843