Cargando…
Adversarially Robust Learning via Entropic Regularization
In this paper we propose a new family of algorithms, ATENT, for training adversarially robust deep neural networks. We formulate a new loss function that is equipped with an additional entropic regularization. Our loss function considers the contribution of adversarial samples that are drawn from a...
Autores principales: | Jagatap, Gauri, Joshi, Ameya, Chowdhury, Animesh Basak, Garg, Siddharth, Hegde, Chinmay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764444/ https://www.ncbi.nlm.nih.gov/pubmed/35059637 http://dx.doi.org/10.3389/frai.2021.780843 |
Ejemplares similares
-
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
por: Li, Xingjian, et al.
Publicado: (2022) -
Enhancing the robustness of vision transformer defense against adversarial attacks based on squeeze-and-excitation module
por: Chang, YouKang, et al.
Publicado: (2023) -
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
por: Jiang, Zhanhong, et al.
Publicado: (2021) -
The Generative Adversarial Brain
por: Gershman, Samuel J.
Publicado: (2019) -
Artificial Intelligence – Advisory or Adversary?
por: Nicolas, Johny, et al.
Publicado: (2023)