Cargando…

Chemical and chemoenzymatic routes to bridged homoarabinofuranosylpyrimidines: Bicyclic AZT analogues

Conformationally restricted diastereomeric homoarabinofuranosylpyrimidines (AZT analogue), i.e., (5′R)-3′-azido-3′-deoxy-2′-O,5′-C-bridged-β-ᴅ-homoarabinofuranosylthymine and -uracil had been synthesized starting from diacetone ᴅ-glucofuranose following chemoenzymatic and chemical routes in 34–35% a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Sandeep, Maity, Jyotirmoy, Kumar, Banty, Kumar, Sumit, Prasad, Ashok K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767562/
https://www.ncbi.nlm.nih.gov/pubmed/35096178
http://dx.doi.org/10.3762/bjoc.18.10
Descripción
Sumario:Conformationally restricted diastereomeric homoarabinofuranosylpyrimidines (AZT analogue), i.e., (5′R)-3′-azido-3′-deoxy-2′-O,5′-C-bridged-β-ᴅ-homoarabinofuranosylthymine and -uracil had been synthesized starting from diacetone ᴅ-glucofuranose following chemoenzymatic and chemical routes in 34–35% and 24–25% overall yields, respectively. The quantitative and diastereoselective acetylation of primary hydroxy over two secondary hydroxy groups present in the key nucleoside precursor was mediated with Lipozyme(®) TL IM in 2-methyltetrahydrofuran following a chemoenzymatic pathway. Whereas, the protection of the primary hydroxy over the lone secondary hydroxy group in the key azido sugar precursor was achieved using bulky tert-butyldiphenylsilyl chloride (TBDPS-Cl) in pyridine in 92% yield following a chemical synthetic pathway. The chemoenzymatic method was found to be superior over the chemical method in respect of the number of synthetic steps and overall yield of the final product.