Cargando…
In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vi...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774285/ https://www.ncbi.nlm.nih.gov/pubmed/35053247 http://dx.doi.org/10.3390/biom12010099 |
_version_ | 1784636301907066880 |
---|---|
author | Saviano, Anella De Vita, Simona Chini, Maria Giovanna Marigliano, Noemi Lauro, Gianluigi Casillo, Gian Marco Raucci, Federica Iorizzi, Maria Hofstetter, Robert Klaus Fischer, Katrin Koeberle, Andreas Werz, Oliver Maione, Francesco Bifulco, Giuseppe |
author_facet | Saviano, Anella De Vita, Simona Chini, Maria Giovanna Marigliano, Noemi Lauro, Gianluigi Casillo, Gian Marco Raucci, Federica Iorizzi, Maria Hofstetter, Robert Klaus Fischer, Katrin Koeberle, Andreas Werz, Oliver Maione, Francesco Bifulco, Giuseppe |
author_sort | Saviano, Anella |
collection | PubMed |
description | Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC(50) = 1.9 ± 0.4 µM) and 5-LO (IC(50) = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases. |
format | Online Article Text |
id | pubmed-8774285 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87742852022-01-21 In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway Saviano, Anella De Vita, Simona Chini, Maria Giovanna Marigliano, Noemi Lauro, Gianluigi Casillo, Gian Marco Raucci, Federica Iorizzi, Maria Hofstetter, Robert Klaus Fischer, Katrin Koeberle, Andreas Werz, Oliver Maione, Francesco Bifulco, Giuseppe Biomolecules Article Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC(50) = 1.9 ± 0.4 µM) and 5-LO (IC(50) = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases. MDPI 2022-01-07 /pmc/articles/PMC8774285/ /pubmed/35053247 http://dx.doi.org/10.3390/biom12010099 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saviano, Anella De Vita, Simona Chini, Maria Giovanna Marigliano, Noemi Lauro, Gianluigi Casillo, Gian Marco Raucci, Federica Iorizzi, Maria Hofstetter, Robert Klaus Fischer, Katrin Koeberle, Andreas Werz, Oliver Maione, Francesco Bifulco, Giuseppe In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title | In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title_full | In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title_fullStr | In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title_full_unstemmed | In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title_short | In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway |
title_sort | in silico, in vitro and in vivo analysis of tanshinone iia and cryptotanshinone from salvia miltiorrhiza as modulators of cyclooxygenase-2/mpges-1/endothelial prostaglandin ep3 pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774285/ https://www.ncbi.nlm.nih.gov/pubmed/35053247 http://dx.doi.org/10.3390/biom12010099 |
work_keys_str_mv | AT savianoanella insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT devitasimona insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT chinimariagiovanna insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT mariglianonoemi insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT laurogianluigi insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT casillogianmarco insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT rauccifederica insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT iorizzimaria insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT hofstetterrobertklaus insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT fischerkatrin insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT koeberleandreas insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT werzoliver insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT maionefrancesco insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway AT bifulcogiuseppe insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway |