Cargando…

In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway

Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vi...

Descripción completa

Detalles Bibliográficos
Autores principales: Saviano, Anella, De Vita, Simona, Chini, Maria Giovanna, Marigliano, Noemi, Lauro, Gianluigi, Casillo, Gian Marco, Raucci, Federica, Iorizzi, Maria, Hofstetter, Robert Klaus, Fischer, Katrin, Koeberle, Andreas, Werz, Oliver, Maione, Francesco, Bifulco, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774285/
https://www.ncbi.nlm.nih.gov/pubmed/35053247
http://dx.doi.org/10.3390/biom12010099
_version_ 1784636301907066880
author Saviano, Anella
De Vita, Simona
Chini, Maria Giovanna
Marigliano, Noemi
Lauro, Gianluigi
Casillo, Gian Marco
Raucci, Federica
Iorizzi, Maria
Hofstetter, Robert Klaus
Fischer, Katrin
Koeberle, Andreas
Werz, Oliver
Maione, Francesco
Bifulco, Giuseppe
author_facet Saviano, Anella
De Vita, Simona
Chini, Maria Giovanna
Marigliano, Noemi
Lauro, Gianluigi
Casillo, Gian Marco
Raucci, Federica
Iorizzi, Maria
Hofstetter, Robert Klaus
Fischer, Katrin
Koeberle, Andreas
Werz, Oliver
Maione, Francesco
Bifulco, Giuseppe
author_sort Saviano, Anella
collection PubMed
description Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC(50) = 1.9 ± 0.4 µM) and 5-LO (IC(50) = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
format Online
Article
Text
id pubmed-8774285
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-87742852022-01-21 In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway Saviano, Anella De Vita, Simona Chini, Maria Giovanna Marigliano, Noemi Lauro, Gianluigi Casillo, Gian Marco Raucci, Federica Iorizzi, Maria Hofstetter, Robert Klaus Fischer, Katrin Koeberle, Andreas Werz, Oliver Maione, Francesco Bifulco, Giuseppe Biomolecules Article Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC(50) = 1.9 ± 0.4 µM) and 5-LO (IC(50) = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases. MDPI 2022-01-07 /pmc/articles/PMC8774285/ /pubmed/35053247 http://dx.doi.org/10.3390/biom12010099 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Saviano, Anella
De Vita, Simona
Chini, Maria Giovanna
Marigliano, Noemi
Lauro, Gianluigi
Casillo, Gian Marco
Raucci, Federica
Iorizzi, Maria
Hofstetter, Robert Klaus
Fischer, Katrin
Koeberle, Andreas
Werz, Oliver
Maione, Francesco
Bifulco, Giuseppe
In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title_full In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title_fullStr In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title_full_unstemmed In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title_short In Silico, In Vitro and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway
title_sort in silico, in vitro and in vivo analysis of tanshinone iia and cryptotanshinone from salvia miltiorrhiza as modulators of cyclooxygenase-2/mpges-1/endothelial prostaglandin ep3 pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774285/
https://www.ncbi.nlm.nih.gov/pubmed/35053247
http://dx.doi.org/10.3390/biom12010099
work_keys_str_mv AT savianoanella insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT devitasimona insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT chinimariagiovanna insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT mariglianonoemi insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT laurogianluigi insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT casillogianmarco insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT rauccifederica insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT iorizzimaria insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT hofstetterrobertklaus insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT fischerkatrin insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT koeberleandreas insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT werzoliver insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT maionefrancesco insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway
AT bifulcogiuseppe insilicoinvitroandinvivoanalysisoftanshinoneiiaandcryptotanshinonefromsalviamiltiorrhizaasmodulatorsofcyclooxygenase2mpges1endothelialprostaglandinep3pathway