Cargando…
Peptide-Mucin Binding and Biosimilar Mucus-Permeating Properties
This study aimed to understand the role of the mucus layer (a biological hydrogel) in the transport mechanisms of peptides. Using established in vitro models, the mucin-binding activity and mucus-permeating property of peptides were determined. Uncharged peptides with relatively high hydrophilicity,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8774657/ https://www.ncbi.nlm.nih.gov/pubmed/35049536 http://dx.doi.org/10.3390/gels8010001 |
Sumario: | This study aimed to understand the role of the mucus layer (a biological hydrogel) in the transport mechanisms of peptides. Using established in vitro models, the mucin-binding activity and mucus-permeating property of peptides were determined. Uncharged peptides with relatively high hydrophilicity, including MANT, TNGQ, and PASL, as well as cationic peptides, including KIPAVF and KMPV, possessed strong mucin-binding activity. Contrarily, uncharged peptides with high hydrophobicity index, including YMSV and QIGLF, exhibited weak mucin-binding activity. Only TNGQ, which has high Boman index and hydrophilicity, showed a high biosimilar mucus-permeating property with a permeability of 96 ± 30% after 60 min. TNGQ showed the potential for high bioavailability due to the high mucin-binding and biosimilar mucus-permeating activities. |
---|